AD SR @ ‘
NAVAL POSTGRADUATE SCHOOL
Monterey , California

== SELECTE
JUL12 199, '
THESIS & B

A PROTOTYPE GRAPHICAL FRONT_END
FOR THE RESA NAVAL WARGAME

by
Thomas G. Avey

June 1990

Thesis Advisors: James N. Eagle
John M. Yurchak

Approved for public release; distribution is unlimited.

91-04505

e,
L T o 91 % 09 079

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

l REPORT DOCUMENTATION PAGE
Ta REPORT SECURITY CLASSIFICATION T6. RESTRICTIVE MARRINGS

UNCLASSIFIED

2a SECURITY CLASSIFICATION AUTRORITY 3. DISTRIBUTION/AVAICABILTTY OF REPORT
Approved for public release;

B DECLASSIFICATION DOWNGRADING SCREDULE PP OVER =0 e
2. D ' distribution is unlimited

4. PERFORMING ORGANIZATION REPCRT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6& NAME OF P§RFORMI G ORGANIZATION 6b. OFFICE SYMBOL [7a. NAME OF MONITORING ORGANIZATION
Cl

omputer Science Dept. (if apps",c,ab'e) Naval Postgraduate School
Naval Postgraduate School D&
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000
Monterey, CA 93943-5000 onterey, CA 93943
Ba. NAME OF FUNDING/SPONSORING OFFICE SYMBOL | 8. PROCUREMENT INSTRUMERT IDENTIFICATION NUMBER
ORGANIZATION (if appiicable)
8c. ADDRESS (City, State, and ZIP Code) 10_SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO. NO. ACCESSION NO.
11. TITLE (Include Security Classiflcarion')
REFAB: A Prototype Graphical Frontend for the RESA Naval Wargame
12 PERSONAL AUTHOR(S)
Avey, '?homas %q
TR (o L SEPORT 13b. TIME COVERED 14, DATE OF REPORT (Year, Month, Day) | 15. PAGE COUNT
Taster’s Thesis FROM 10 June 1990 77

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the authors and do not reflect the official policy or position of the Department of Defense or the

U.S. Government

17 COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
CED SRouP SUB.GROUP RESA, Graphic User Interfaces, Computer Wargame Simulations,

BATMAN and ROBIN, Man-Machine Interfaces

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Computer wargame simulations have typically provided military officers with an effective method of testing their
knowledge of tactics and strategy. However, large simulations typically use a command language dialogue interfac-
ing the user with the wargame. This type of interface requires a great deal of typing skill and memorization of the
language syntax and allowing little time for decision making and battle analysis. RESA is a typical theater-level naval
wargame which utilizes this typeof interface. Presented in this research is the RESA Enhanced FORCE and BUILD
(REFAB), a first phase prototype development of a graphic user interface utilizing a bit-mapped display and window-
ing environment. REFAB was developed from an existing system, BATMAN and ROBIN. The interface concen-
trates on combinations of form filling, graphic, direct manipulation, and iconic dialogues, and stresses information
presentation. This interface could be utilized for RESA to ease the system operating requirements placed on the RESA
users, allowing the user to make timely decisions, gather information more quickly, and provide a more rewarding
wargaming session.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[UNCLASSIFIED/UNLIMITED D SAME AS RPT. D DTICUSERS | UNCLASSIFIED

223 NAME OF RESPONSIB DIVIDUA 22b. TELEPHONE (Inciude Area Code) |22¢, QLFIGE SYMBOL
?Eagl‘é, ?ames 18 ané%rchaﬂ,ﬁohn M. (408) 646-2654) | OW
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited.

REFAB:
A PROTOTYPE GRAPHICAL FRONTEND
FOR THE RESA NAVAL WARGAME

by

Thomas Gregg Avey
Captain, United States Marine Corps
B.S., University of Utah
Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1990
A
Alnhor: -%A/QJ‘ZX’M‘?; ;/"'55/\
7 C—T— >
Thomas Gregg Avey

Approved By: W/{' (,

J?es N. %agle, Thesis Advxsor

lok«. W"\ %\/LL

hn M. Yurch dvisor
ST

Robert B. McGhee, Chairman,
Department of Computer Science

i

ABSTRACT

Computer wargame simulations have typically provided military officers with an
effective method of testing their knowledge of tactics and strategy. However, large
simulations typically use a command language dialogue interfacing the user with the
wargame. This type of interface requires a great deal of typing skill and memorization of
the language syntax and allows little time for decision making and battle analysis. RESA is
a typical theater-level naval wargame which utilizes this type of interface. Presented in this
research is the RESA Enhanced FORCE and BUILD (REFAB), a first phase prototype
development of a graphic user interface utilizing a bit-mapped display and windowing
environment. REFAB was developed from an existing system, BATMAN and ROBIN.
The interface concentrates on combinations of form filling, graphic, direct manipulation,
and iconic dialogues, and stresses information presentation. This interface could be utilized
for RESA to ease the system operating requirements placed on the RESA users, allowing
the user to make timely decisions, gather information quickly, and provide a more

rewarding wargaming session.

. Accession For

NTIS GRA&I Cd

DTIC TAB 0
Unannounced a
Justification . _____ |
By

| Distribution/

Availability Codes

i Dist Special

™ L

|Avail and/os |

TABLE OF CONTENTS

I INTRODUCTION ...ttt sitsessee e st e sseesesssessessesssssassesssansans 1
A BACKGROUND ..ottt st s sesens s saess e saasas e ssensesnens 1
B. SCOPE ...ttt sttt st sae s st e e st b e sa e e sranaene 2
IL ANALYSIS OF USER INTERFACE REQUIREMENTScccccoeiviinniriiennrennens 5
A. BUILD ..o e e 5
B. FORCE ...ttt sve e saes st s e st s stas e ssaesnas e e e ansranes 9
C. DESIGN ISSUES IN THE DEVELOPMENT OF REFAB...................... 11
D. REFAB INTERFACE DESIGN......cocoiiiiiiiniitinccientnceeeseeenecneenees 13
III. SOFTWARE BASIS FOR FRONT-END REPLACEMENTcccccoveniinirirnnne. 17
A DESCRIPTIONcciiiiiiiiniiniiiiicc it sresaesree e seae e esessaanees 17
B SOFTWARE DESIGN ..ottt snte e nenans 18
C SOFTWARE COMPOSITION......cciiiriniiiniininierinierienesrasreseesessssrassessosens 19
IV. PROTOTYPE IMPLEMENTATION....c.ecitiinitiniiiinentnenccteteenreereeeesee s esesnans 23
A REFAB ENVIRONMENT ...ttt seseneseetessnssssss e esnnns 23
B MODIFICATIONS TO PACKAGES ..ot nnanans 24
C WINDOW LAYOUT ..ottt see e ssessesnasans 26
D MODIFICATIONS OF DATA STRUCTURES.ccccccomrinmninnririennnnens 3]
E ADDITIONAL FUNCTIONSooiiiiiiiieineeiecenesessesresseeneesnasaes 33
V. RECOMMENDATIONS ...ttt sttt sres s st ssasessssesessssses 36
A. FUTURE RESEARCH ..ottt saeinnanans 36
B. CONCLUSIONS ...ttt srestes e st srestevssassssasseneses 36
APPENDIX A RESA PLATFORM AND SYSTEM CHARACTERISTICS............. 39

iv

APPENDIX C BATMAN AND ROBIN SCENARIO STRUCTURE..........cccuen...... 64
LIST OF REFERENCEScooiiriiiiiiiccrtttrnntne sttt sbesss s et eeemeennesesanas 67
INITIAL DISTRIBUTION LISTccoiiitnieiriereeiininnieneeeeseeee et e sseseesseeeeenseseneaan 68

TABLE 1

LIST OF TABLES

BATMAN AND ROBIN PACKAGES DELETED

vi

..................................

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Figure 10

LIST OF FIGURES

BUILD SCreen LayOut.....cccciviieicniniiiieeniniiiisssineenresssessessnsesissssseeses 7
FORCE SCreen LayOulccccieeieriirineeneeeesecnececsessnnssssessesseesessesssesseons 11
Prototype Development Steps.......ccooivevrirrinmniniiiininseneeniessesessinseens 15
Panel_Win SIUCIUTEcovvviiiieiie e e e eesressetesssesit e essrassessssstassssesssesanns 21
CanVas_WiN SITUCLUTCcoiuriiiirecreeistcesenrssssressaesssseeseesesesssssessasssssssneesss 22
Build Function Screen Layoutccceiiiiaiicecninneinininnienssensenseseseessenans 26
Build Function Display with Workspace Openc.cocceevivivinnenicnncnncnes 27
Force Function Screen Layout.........ccceeveieviieciniiincrenieeeniessie e e e ceseennsnes 29
Force Function Display.......c.cccvivinniinenccnnninieeccsssiesinsnnens 30
REFAB Ship StUCIUe.....cociiiiiiiierriiie ettt 32

vii

ACKNOWLEDGMENTS

I would like to thank the following individuals for their support in this research and the

development of REFAB:

* LCDR Yurchak for his encouragement, insight, assistance, and overlooking all of
my interruptions,

o Capt Block for his support, funding of this research effort, and an occasional ear
which helped to blow off steam,

« Jeff Franklin, Alan Jones, and Bill Thomas for their assistance in the WARLAB,
» Chuck Lombardo for his last minute assistance and tutoring in Framemaker, and

» Rosalie Johnson and Sue Whalen for their technical assistance in customizing my
development environment.

But most importantly, I thank my wife, Cynthia and my daughter, Catherine, for their
patience and support during the past twenty-two months at the Naval Postgraduate School.

Without their support and understanding, this achievement would not have been possible.

viii

I. INTRODUCTION

Computer wargaming simulations have typically provided military officers with an ef-
fective method of testing their knowledge of tactics and strategy. But they are also typically
awkward to use, relying on an often cryptic syntax-directed command language. The goal
of this thesis is to identify the requirements and produce a prototype of a more intuitive,

simple, user-controlled interface for a computer wargame simulation.

A. BACKGROUND

Wargaming is a vital educational and research tool for the tactical training of today’s
officers. When employed as a computer simulation, it is an effective method for testing
doctrine, strategy, tactics and practical decision making. Additionally, its economic
benefits allow for the analysis of strategic plans and operations without the physical
deployment of military forces. Careful analysis during simulation gives the user the
foresight to “predict” the consequences of specific courses of actions. Increased interest
and acceptance has produced a variety of computer simulations.

Unfortunately, this complex modeling environment has also produced user interfaces
which are equally complex. User input is typically via a syntactic command line interface.
Commands are input through the keyboard and are often very structured and cryptic. Any
deviation from the command syntax whether through misspelling or an incorrect argument,
requires the entire command to be re-entered. This gives the user the feeling that the system
is in control of the user, instead of the user directing the system. Additionally, this type of
interface requires the user to remember an extensive set of commands and syntax, requiring
either in-depth training or providing operator personnel.

The Research, Evaluation and Systems Analysis (RESA) developed at the Naval Ocean

Systems Center (NOSC), is a typical wargaming system used at the Naval Postgraduate

School. RESA is a multi-user interactive naval wargame used for wargaming, research,
teaching and battle group tactical training. It is written in the RATional FORtran language,
RATFOR, and runs under the VMS operating system on a VAX 11/780. RESA utilizes
both VT100/102 type terminals for command input and status boards, and RAMTEK
graphics displays for theater display. It is designed as a two-sided (Blue and Orange forces)
game whereby users direct platforms or objects (aircraft, ships, subs, missiles) in a real-
time battle scenario. It also provides an umpire control capability of neutral forces.

RESA is used in conjunction with several courses at the Naval Postgraduate School and
the users are typically student officers. They have no previous knowledge of RESA and
little, if any, experience with wargaming or computers. Additionally, time constraints and
class schedules provides little time for training. The interface for RESA is very inefficient

for this class of users, the novice.

B. SCOPE
RESA’s inefficiency stems from it’s out-dated user interface. The three main areas of
“unfriendliness” are:

» Keyboard entry - All input is via the keyboard. With users who are typically un-
familiar with wargames and computers, this can be a hinderance. Although RESA
provides some assistance by accepting abbreviated commands if unique enough
to distinguish from other commands, the impetus is still on the user to correctly
type the commands. In tense situations as may appear during a wargame, mis-
spellings can cause a great deal of frustration.

* Knowledge of Command Syntax - While RESA commands are fairly descriptive
of their actions, the user is still required to commit to memory, a complex se-
quence of commands. This requires the use of on-line help which RESA provides.
But this draws the user away from his current input, and a player can become lost
in the command structure. And again, in tense situations, the user is not going to
want to stop to look something up in the on-line help.

e Variety of Information on a Variety of Terminals - As previously stated, RESA
utilizes VT100/102 terminals for command input and computer response. Addi-
tionally, the VT100 terminals are used to provide the user with current data on

28]

game platforms. And the RAMTEK graphic displays are used to provide a current
overhead view of the current game situation. The user must swing his attention
from one terminal to the next to “find” the information required.

As can be seen, RESA is not a wargame for first-time or sporadic use. It is not that

RESA is of a poor design, but that technology has passed it by. RESA has been under

continuing development for several users. With the increased use o’ bit-mapped displays

and window management systems, many systems have been developed which provide the

user with a more intuitive environment in which to operate. Very little training is needed to

advance the user from the novice level. It is now time for RESA and similar wargames to

catch up to technology and become more “user friendly”. The following subjective tasks

can be used to measure user friendliness:

time to learn

speed of performance

rate of errors by users

subjective satisfaction

retention over time (Shneiderman, 1987, pp. 73-74)

Enhancing the user interface by optimizing the previously mentioned measures, could

increase user productivity. By utilizing an interface which is more “user friendly” and

intuitive, users could complete tasks more quickly and efficiently, with less aggravation

and concentrate more on decision making tasks.

RESA is separated into five major processes:

BUILD - establishes the detailed database of characteristics for all force, sensor,
weapon, and C3 system objects.

FORCE - establishes the exercise initial conditions for the wargame, responds to
Force orders and operates on subsets of the characteristics database.

Wargame Initialization - initializes the master database tables or blackboard of the
warfare environment for game play.

The Wargame - executes user orders, operates models, updates the blackboard,
and outputs platform status tables.

Postgame Analysis - collects and processes warfare environment data and pro-
vides tables of analysis

The focus of this thesis will be on the first two pregame processes, BUILD and FORCE.
An implementation of a RESA game session involves the creation of a game file to identify
the opposing forces, Blue forces consisting of one or more carrier battle groups, Orange
forces (surface action groups, submarines, land based attack and fighter aircraft), and
environmental factors (acoustic and electronic propagation, noise conditions, and weather).
This input is accomplished through the RESA frontend, FORCE and BUILD. Pre-game
setup is a time consuming process. Exercise scenarios typically take a week to generate
from scratch. With this time constraint, players never have the opportunity to generate their
own scenarios and must rely on the staff to provide this function. Even then, staff generated
scenarios are typically previously generated scenarios, modified to accept new situations.
They are very rarely designed from scratch. By enhancing the capabilities for defining
exercise scenarios, players could become more involved in game setup and the staff could
create additional scenarios from scratch in a more timely manner.

The objective of this thesis will be to apply design guidelines for man-machine
interfaces to the development of a prototype which is more “user friendly” than the current
RESA. The RESA Enhanced FORCE And BUILD (REFAB) interface will stress
information presentation allowing the user to make timely decisions, gather information

more quickly, and ease human-computer communications.

II. ANALYSIS OF USER INTERFACE REQUIREMENTS

A. BUILD

As stated previously, the BUILD function is utilized to create a database of static force,
sensor, and weapons characteristics. These “object” characteristics describe the simulation
platforms and systems, and may be real, proposed or notional. This flexibility allows for
the testing and integrating of new, modified and proposed platforms within the current
strategic and tactical doctrine, allowing users to visualize their effects, strengths and
weaknesses. Force characteristics describe ship classes (surface, submarine, small boat),
aircraft types, and shore bases. Sensor characteristics are used to model radars, ESM
systems, jammers (communications/radar), active/passive sonars, sonobuoys, surveillance
satellites, HFDF systems, SOSUS systems, communications equipment/buoys, and
navigation systems. Weapons characteristics define cruise missiles, torpedoes. AAM,
SAM, CIWS, bombs, guns, and mines. The BUILD database consists of a set of fifteen
files. Each file name starts with the same five alphanumeric characters, the database name.
This is followed by "C." and a three letter designation for the type of objects defined in that
file. The object characteristics are identified in Appendix A. (NOSC, 1988)

The center of RESA is the set of models defining object behavior relative to other
objects, the current situation and environmental factors. The models are essentially
equations with the characteristics database providing the static or constant terms. The

variables for the models are defined by the dynamic characteristics of the game situation.

For example, the RESA radar mode! for signal excess uses the following equation to
calculatc radar detections:

SE=PT+2G+2W +TCS-4RD-B-NF-L-C
where:

SE = Signal excess or strength of the returning radar signal

PT = Peak transmitted power

G = Antenna gain

W = Wavelength

TCS= Radar cross section of the target

D = Ducting factor

R =Range to the target

B = IF bandwidth of the radar receiver

NF = Noise factor of the radar

C = Sea clutter factor

L = Radar system loss factor (NOSC, 1988, p. 2)

Sea clutter and ducting are environmental factors and as such, will depend on the
current situation. The range to the target is also dynamic and is determined as needed. The
variable TCS is obtained from the ship or aircraft database, depending on the target. The
rest of the variables are constants drawn from the radar/ESM database (XXXXXC.SEN).
It is important to note that any creation of objects within BUILD must specify all of the
required static characteristics for that object.

BUILD functions as an interactive editor of the characteristics database. Once BUILD
is invoked, the user is prompted for the name of the characteristics database, which is then
loaded. The user can then prepare the database to fit the needs of the wargame scenario by
utilizing three types of commands or “orders’:

» BUILD program control orders

* Object (e.g. ships, weapons, radar) access orders
» Characteristics control orders.
The program control orders direct the top level of the BUILD program. These

commands consist of the following functions:

» BUILD - This order loads the BUILD program, defines the database name and
presents the top level menu of orders as depicted in Figure 1. At this point, any
order on the menu may be entered. BUILD and FORCE require only enough of
the order be entered which differentiates it from the other available orders.

——MESSHGES BUILD

IMNFPUT

MEXT IMPUT (BYE, PRINT, RIR, COMMBUOY, COMMIAMMER,
COMMPRIR, COMMSUITE, CRUISE MISSILE, JAMMER, NARVYAID, RRDAR/ESH,
SURVSAT, SHIP, SHORE BASE, SONAR, SONOBUOY, or WERPON). ..

Figure 1 -BUILD Screen Layout

+ PRINT - This order generates a file of the characteristics database for printing. If
no parameter is defined, then the entire database is written to the file. If a name of
one of the characteristics files is entered, then only that characteristics file is writ-
ten. The name of the file generated is of the form XXXXXC.LIS.

+ WRITE - This order copies contents of the characteristics database into a file
which can then be edited by a standard text editor. If no parameter is defined, then
the entire database is written to the file. If a name of one of the characteristics files
is entered, then only that characteristics file is written. The name of the file gen-
erated is of the form XXXXXC.TXT.

» BYE - This order closes an open characteristics file and returns to the top level
menu or if at the top level menu, terminates the BUILD program. Open files are
not automatically saved when this order is executed.

The object access orders open their respective object characteristics file for editing.
Only one characteristics file can be open at a time. These orders make available the
characteristics control orders. Returning to the top level menu is accomplished through the
program control order, BYE. The object access orders include the following: AIR,
COMMBUOY, COMMPAIR, COMMJAMMER, COMMSUITE, CRUISE
MISSILE, JAMMER, NAVAID, RADAR/ESM, SURVSAT, SHIP, SHORE BASE,
SONAR, SONOBUOY, WEAPON. A listing of the required and optional characteristics
is displayed on the terminal. A new instance of an object may then be entered into the
database by providing all of the required characteristics. Any omissions are identified when
the user tries to save the object.

The characteristics control orders provide the editing access to the objects and the their
characteristics. These commands consist of the following functions:

» FIND - This order along with the parameter, object_name, will search the open
characteristics file for an object matching the parameter. If a match is found, then
a copy of that objects characteristics will be placed in the work area. The charac-
teristics are also displayed on the display terminal. If another objects characteris-
tics were in the work area when the FIND order was given, then those
characteristics will be saved prior to the new characteristics being made available
in the work area.

* SAVE - This function checks for the completeness of the characteristics for an ob-
ject in the work area as defined by the database dictionary in Appendix A. If in-
complete, then BUILD prompts for completion. Otherwise, the open
characteristics file is updated and closed.

* LIST - This order lists the names of all objects in the currently open characteris-
tics file,

* MORE - This order will save any characteristics in the work area if they have
been changed. Additionally, it functions as a copy routine, where the name of the
object currently in the work area is deleted, but the other characteristics remain.
This allows the user to define multiple objects with similar characteristics. The
object is named with the NAME order.

» NAME - This order functions with MORE as a copy routine, where a name may
be assigned to the object currently in the work area.

» CLASS - This order provides the same function as NAME, but for the ship ob-
jects.

« KILL - This order clears the work area of all characteristics. The effect is to erase
changes to the characteristics prior to saving. This order has no effect on the char-
acteristics file.

* DELETE - This orders allows for the deletion of characteristics for the object
currently in the work area. Single or multiple occurrences of characteristics may
be identified for deletion as well as an entire set of characteristics for an object.

* HELP - This order provides explanatory comments for the named parameters.
Help may be requested for any program order or the names of any characteristics
of objects in the database.

The BUILD grammar for these orders is defined further in Appendix B.

B. FORCE

The FORCE program is utilized to initialize the scenario of the simulation. FORCE
uses characteristics from the characteristics database modified using BUILD. Additionally,
'FORCE provides for the identification of the following operational situation
characteristics: specific ships and shore bases, task hierarchy organization, definition of
views, types and maintenance status of aircraft, communications networks, weather and
acoustic environment, EMCON conditions, and restored commands. Characteristics from
the BUILD database are mapped into a set of thirty-two scenario files as required by
FORCE commands. These scenario files are later mapped to the RESA game blackboard
through the wargame unitization process. The blackboard maintains the status and control
of all objects in the warfare environment. The file name structure and data contained in
these files is identified in Appendix A. (NOSC, 1989)

FORCE also functions as an interactive editor for the initial conditions of the game

utilizing the objects available from the BUILD database. A user may bypass the interactive

action of FORCE by feeding the set of FORCE orders to FORCE via a text file. This action

will not be addressed in this thesis as it requires minimal user interaction.

FORCE recognizes two types of orders: program control orders and scenario control

orders. FORCE program control orders provide the same function as do the program

control orders for BUILD by controlling the top-level functions performed. The program

control orders consist of the following commands:

FORCE - This order loads the FORCE program. It prompts the user to define the
BUILD database name, the name of the scenario and the nature of the scenario as
follows:

+« NEW if a new scenario is to be created,

+ UPDATE if an existing scenario is to be used without referencing the
BUILD database, i.e., changes made to the BUILD files since the scenario
creation will not be reflected,

+ RELINKIif an existing scenario is to be used and the BUILD database is
to be re-linked to reflect any changes.

Unlike the BUILD order, FORCE provides no menu of commands to the user as
shown in Figure 2. At the Command: prompt, the user may type a question mark
(7 at any time during command input and an appropriate help message will be
displayed in the display area above.

BYE - This order validates the FORCE orders made to create the scenario, saves
the scenario, and terminates the FORCE program. If an error is detected while
comparing the BUILD database and the FORCE scenario, the user is prompted for
corrections.

STOP - This order forces program termination whereby the current scenario is
not saved.

The FORCE scenario control orders control the generation of objects, situations, and

conditions that define the scenario. The syntax for the following control orders is defined

in Appendix B:

ENTER - This order generates an instance of an object for the scenario as deter-
mined by the parameters provided. Although these orders do not have to be en-
tered in a particular order, the orders are presented in the order in which a user
might create a scenario. For example, ships and shore bases are defined before air-
craft can be placed on them.

DELETE - This order deletes from the scenario the entities specified by the pa-
rameters.

10

* PRINT - This order writes portions of or the entire scenario to a disk file. The
name of the file generated is of the form XXXXXS.LIS.

——MESSRGES FORCE

INPUT

Command:

Figure 2 -FORCE Screen Layout

C. DESIGN ISSUES IN THE DEVELOPMENT OF REFAB

The goal of any user interface is to project a specific dialogue style on the user which
is defined by a consistent and unified set of interaction techniques. There are various
categories of interactive styles which may be used to insulate the user from the computer
or software system. RESA currently uses a combination of command line dialogue and
programining language dialogue. The command syntax is very rigid and the user is required
to type the instructions to the computer in this structured pseudo-language. A scenario can
be created from within a text editor using the force orders and input into FORCE non-
interactively.

Window systems and environments make use of numerous overlapping or tiled

11

windows which provide access to multiple sources of information. Each window can
support its own individual interactive style or dialogue, thus allowing for the integration of
multiple concurrent activities on the same display. But windows alone do not present the
panacea of a visual environment. What is displayed in the windows and how it is presented
to the user is the key.

Iconic images are a “natural” dialogue for users because the brain has a tremendous
processing and storing capability for pictures. Icons are symbols or pictures which provide
a visual feedback and input capability to the system. They are used to help reduce the
learning curve, “facilitate user performance while reducing errors (Baecker and Buxton,
1987, p. 431)”, and ease the pain of learning and remembering commands (Shu, 1988, p. 5).

Increased use of graphical representations and pictures is stimulated by the
assumptions that pictures can convey more meaning than words, aid in understanding and
remembering commands, provide an incentive to use a system, and provide fewer language
barriers (Shu, 1989, pp. 7-8). Other styles typically used include menu systems, where
system choices are presented to the user in a menu of alternatives, form filling dialogues,
where the user fills in fields displayed in one or more forms on the screen, and graphical
interaction, where the user creates and edits diagrams, drawings or images are also very
effective styles which provide consistent information and intuitive manipulation of the
system. (Baecker and Buxton, 1987, p. 427)

But the most intuitive dialogue is that of direct manipulation where the user
manipulates the system through a series of buttons, toggles, and sliders which are graphic
representations of the data. These types of dialogue provide the following functionality:

» “Novices can learn basic functionality quickly, usually through a demonstration
by a more experienced user.

12

« Experts can work extremely rapidly to carry out a wide range of tasks, even de-
fining new functions and features.

« Error messages are rarely needed.

» Users can immediately see if their actions are furthering their goals and if not they
can simply change the direction of their activity.

» Users experience less anxiety because the system is comprehensible and because
actions are so easily reversible.

» Users gain confidence and mastery because they initiate an action, feel in control
and can predict system responses.” (Schneiderman, 1987, pp. 202-203)

In a direct manipulation dialogue, the system provides continuous, dynamic, visible
feedback of the object of interest.

The question now is “What is the best interaction style and the technique to integrate
that style?” “The best interaction style is and will remain a complex function of the task,
the users who are to carry out the task, the environment within which they will work, and
the tools with which they are to do the job (Baecker and Buxton, 1987, pg 433)”. Each of
the dialogue styles mentioned has its own merit and provides varying degrees of
functionality. The REFAB environment in which the user will operate will not be static and
necessitates an interface which is adaptable to a collage of dialogue styles. Each phase
differs depending on the information being presented and user needs for providing a more

intuitive and flexible interface for constructing RESA game scenarios.

D. REFAB INTERFACE DESIGN

The successful implementation of any software system requires an amount of
preliminary requirements analysis commensurate with the size of the project. In the case of
the redesign of FORCE and BUILD, both users and designers are unsure as to what form
the user interface should take. Additionally, the program function is already well defined,

which in itself will drive many of the user interface requirements. In a case such as this,

specific requirements analysis can be time consuming and wasteful. It is difficult to
formally specify a user interface without the use of a prototype (Pressman, 1987, p. 53).

The prototyping process provides executable models depicting various attributes of the
proposed system during the requirements analysis phase of software development.
Prototyping allows the interface to be evaluated from the user level, providing feedback in
the form of more refined requirements, and allowing the system to more fully meet the
needs of the user once the system is designed, implemented and tested. The requirements
analyst and user play an integral part in ensuring the requirements specifications meet the
user needs. (Pressman, 1987, pp. 22-23)

Because the prototyping approach to requirements analysis and software development
is being used, the software must be designed using structured modules and object-oriented
programming techniques to ensure modifiability, extensibility, understandability, and
transferability. Figure 3 depicts the sequence of events for the prototyping paradigm.

The steps required to implement a prototype are as follows:

» Define the overall objectives of the system specifying the known requirements
and the “fuzzy” areas.

» Produce a quick design focusing on the aspects of the design visible to the user.
» Construct the prototype.
» User evaluates the prototype for refinement of requirements.

This cycle continues until the final version provides a model of the salient user critical

features of the system and the developer has a better understanding of what is required.

Because REFAB is aredesign of an existing interface, the overall objectives of REFAB
are already known and have been previously stated. The interface must provide the
following BUILD functions:

» Create characteristics database files.
» Provide editing function to create or change characteristics in the database.
» Provide a workspace for editing of characteristics.

14

» Provide some controls to ensure that characteristics entered are complete and cor-
rect.

» Provide a capability to print database for review.

Define
System
Objectives

Construct
Prototype

Evaluate
and Refine
Requirements

Engineer
Product

Figure 3 -Prototype Development Steps

REFAB must also provide the following FORCE functions:

» Provide mechanism to define scenario starting conditions.

» Verify force, sensor and weapon characteristics for scenario are contained in
BUILD files.

¢ Provide mechanism for creating new scenario files, updating old files, or chang-
ing files after characteristics in BUILD are changed.

» Provide for printing data entered for review.
* Generate or delete force files.
The second phase in prototyping is identifying the form of a functional model. A very

effective method is the use of an existing program or system which performs a similar

function as the intended system. The existing system is then used as a base to sculpt and

15

mold a functional model of the salient features critical to the system. The method used for

REFAB was to modify an existing system, BATMAN and ROBIN.

16

III. SOFTWARE BASIS FOR FRONT-END REPLACEMENT

A. DESCRIPTION

The BATtle-MANagement Assessment (BATMAN) and the Raid Originator Bogie
INgress (ROBIN) systems were developed by NPRDC, San Diego to test users against
performance criteria based on allocating, deploying and managing surface, subsurface and
air assets during simulated theater-level conflicts. These systems were designed for
computer-based, single user performance testing using very low level modeling, but
emphasized a very friendly user interface presented with animated, high resolution
graphics.

These two systems were developed as sister systems. Multiple carrier-based, land-
based, or amphibious assault ship-based task forces, can be designed in ROBIN and
presented to the testee or user in BATMAN. ROBIN functions as a scenario generator
allowing for the creation of hostile surface, subsurface and air platforms configured into
Red force raids. The scenario generator also accepts the specification of platform tracks for
the scenario, as well as chaff and communications jamming corridors. The scenario
designer can then preview the Red movement for the scenario through a timed simulation.
Additionally, the scenario designer can specify the number and type of Blue force tactical
resources available to the testee for wargaming within BATMAN.

BATMAN provides the actual testing mechanism where the user must allocate, deploy
and manage Blue surface, subsurface and air platforms against the Red force threat. The
user is presented with up to three task forces based on mother platforms (carriers, land bases
or amphibious assault ships). The user must allocate weapons to aircraft, aircraft to mother

platforms, and surface and sub-surface platforms to the warfare theater to meet the hostile

17

threat. The user must plan flight deck operation, assign combat air patrols (CAPs) of
various types, schedule tankers for refueling, and preposition early warning aircraft. During
game play, the user deploys fighters to intercept threat aircraft, and attack aircraft against
hostile surface platforms. Once simulation ends, performance measures are presented to the
user evaluating the users understanding and application of naval warfare strategy, tactics
and decision-making performance. (Federico, 1989, pp. 1-3)

BATMAN and ROBIN’s graphic interface is the key to the capabilities of this system
and the ease with which users can manipulate the system. Both the user and the scenario
designer are consistently presented with a theater level map of the current situations. All
platforms are depicted as icons and commands are represented as buttons. The allocation
of assets is as “simple” as clicking the mouse cursor on a platform and then clicking the

cursor on the appropriate assets to be tagged for that platform.

B. SOFTWARE DESIGN

BATMAN and ROBIN are written in the C programming language and operate on the
SUN 4/260 family of workstations under SUNOS 4.0, a UNIX-based operating system.
They were designed using generic structures and object-oriented programming practices
which aid in its flexibility and adaptability. This functionality was aided by the use of the
Sun Visual/Integrated Environment for Workstations (SunView).

SunView is a software environment which supports interactive, graphics-based
applications operating within windows. Itis an object-oriented system where the main class
of visual objects are windows. Other classes of objects include cursors, icons, menus,
scrollbars, and panel-items. Windows can be either tiled using the sub-class frame or
overlapping using the sub-classes canvas, panel, text sub-window, and TTY sub-window.

BATMAN and ROBIN implement panels and canvas sub-windows exclusively.

18

Panels provide panel-items through which a user interacts with a system. These items
include buttons, toggles, choices, messages, text, and sliders. Each item utilizes its own set
of attributes to define its representation and location to the user. The library functions
which define panel-items make use of variable argument lists so that the programmer may
define the panel-items to suit the needs of the system. (Sun Microsystems, 1988, pp. 3-12)

The canvas sub-window is essentially a drawing window. It provides greater flexibility
than a panel where it is not constrained to a fixed set of items. It uses lower level functions
to access the window and must provide it’s own routine to handle events.

BATMAN and ROBIN utilize a direct manipulation, graphic user interface where
graphic objects or icons represent various platforms and functions. A theater level map is
presented to the user on a SunView canvas. Platforms can be displayed, moved or tagged
by moving and clicking the mouse cursor. The result is immediate feedback through real-

time “visual differencing”. The user can immediately visualize the results of all actions.

C. SOFTWARE COMPOSITION

BATMAN and ROBIN utilize five databases during the various game phases. The
scenario database is an ascii text file representation of the platforms available for a specific
scenario. The user database maintains a catalog of users permitted to operate the system.
Both of these are very primitive, do not provide any functionality required by REFAB, and
will not be discussed further.

The graphics database includes all icons and graphic representations of objects utilized
in BATMAN and ROBIN. The graphics are all stored in standard Sun raster file format.
Access to graphics database is afforded through the object definition database.

The object definition database is an ASCII text file list of all objects or platforms

utilized in BATMAN and ROBIN. It is named “.defaults” and is initialized once the user

19

enters the SunView environment. The file is a hierarchical list of option names and each
line in the file consists of an object, parameter and value formatted as:

/object/parameter “value”,
with each subsequent level separated by a slash. Option values are stored as strings and the
string values can be retrieved as strings, integers, characters, booleans or enumerated types
using the Sun library functions get_defaults_*. The format of this database will be
discussed further in Chapter 4. (Sun Microsystems, 1988, pp. 145-154)

The fifth database is the database of World Database II maps from the Applied Physics
Laboratory at Johns Hopkins University. The maps are rendered by an orthogonal
projection of the globe onto a horizontal plane at a specified range and latitude-longitude
(lat-long) coordinate. The maps can be drawn with or without political borders and lat-long
lines. The maps are accessed through a package of library routines which draw the maps on
a SunView pixrect or picture rectangle.

Additionally, the software includes seven other packages. Because REFAB is only
concerned with database definition and scenario design, the BATMAN simulation and
performance measures packages were not considered. The initialization and control
package initializes the window environment, scenario environment, and scenario data
structures. The loadout package handles weapons loadout for Blue air platforms and creates
the tactical situation map. The deployment package provides access to the scenario
situation map for the deployment of Blue tactical assets and the setting of initial alert levels.
The Robin package implements the scenario generator for creating and editing Red force
raids and assigning platforms to Blue task forces. The last package is a set of tools which
provide mechanisms for creating and manipulating three key window objects within

BATMAN and ROBIN.[Federico, 1989,pp. 16-50]

20

The Panel_win routines create and manipulate a data structure based on the Sunview
Panel, but with “additional information to provide added functionality” (Federico, 1989, p.
48). This package allows for the creation of a variable number of generic Panel_items
displayed as icons and is utilized extensively for weapons and aircraft loadout.
Additionally, it maintains the screen coordinates for the visible and hidden rectangies. The

abstract definition is provided in Figure 4.

PANEL_WIN
= Sunview Panel
visible rectangle
hidden rectangle
SunView Panel_items|]
icon pixrect(]
x-location of icon(]
y-location of icon(}

+ 4+ + + +

Figure 4 -Panel_win Structure

The Canvas_win is another package which creates and manipulates a data structure
based on a SunView object, the Canvas. It also provides the additional information of
visible and hidden rectangles as well as a mechanism where the Canvas can act like a Panel
and provide access to pseudo-buttons. The abstract definition for the Canvas_win is shown
in Figure 5.

Finally, BATMAN and ROBIN utilize an instance of the Panel_win for displaying
popup messages, which contain buttons, messages or text items. One private Panel_win is

utilized to display the popup messages and is cleared between each use.

21

BATMAN and ROBIN incorporate the windowing functionality provided by SunView,
the graphics representation provided by a bit-mapped display, and the use of menus and

direct manipulation afforded by an event-driven interrupt handier.

CANVAS_WIN
= Sunview Canvas
visible rectangle
hidden rectangle
psuedo Canvas_items|)
icon pixrect(]
x-location of icon({]
y-location of icon[]

+ 4+ 4+ + + +

Figure S -Canvas_win structure

The combination of RESA’s high-level models with BATMAN and ROBIN’s graphic

interface appears to be a likely combination.

22

IV. PROTOTYPE IMPLEMENTATION

The method of development utilized to prototype REFAB was to extract all applicable
source modules from BATMAN and ROBIN. This approach has provided an economical,
quick implementation of a full scale visual interface. BATMAN and ROBIN provided a
good basis for this development effort because of the similar nature in program function to
RESA.

Our major design criteria was to maintain compatibility with RESA. The first draft pro-
totype had to provide access to the same command functionality as provided within
FORCE and BUILD. Users already familiar with FORCE and BUILD must be comfortable
in front of the new interface to be able to manipulate the system with little or no documen-
tation. REFAB is divided into a build phase and a force phase mirroring the BUILD and
FORCE programs of RESA.

A. REFAB ENVIRONMENT

REFAB was developed and operates on a2 Sun Microsystems SPARC System-370
workstation which utilizes the Sun 4300 CPU. These workstations provide a powerful
graphics environment through the use of standard (1142 x 870 pixel) or increased
resolution (1600 x 1280 pixel) monochrome, color or gray-scale monitors, the choice of an
8 or 24 bit plane graphics frame buffer, and use of the SunView windowing environment.
The use of the Sun workstation was driven by the use of BATMAN and ROBIN as the
prototype. Utilization of the Sun SPARC station was also predicated on the fact that the
map routines to access the World Database II maps are in an object library compiled for the
SPARC environment.

REFAB is written in “C” due to both the use of BATMAN and ROBIN, and its

implementation on the Sun workstation. “C” is very closely associated with the UNIX

23

operating system on the Sun and eases the interfacing with the SunView environment. It
provides the power and structure of high level languages with the absence of restrictions.
The use of SunView affords the opportunity to utilize programming techniques indicative
of object-oriented languages.

Object-oriented programming is more of a technique for programming in a language
than it is using an object-oriented language. It is a “paradigm for writing good
programs’’(Stroustrup,1988, p. 10) while object-oriented languages provide constructs
which support the object-oriented style. This style is one which provides data abstraction,
data hiding and is modular.

Programming in modules centralizes data of a specific type and places it under the
control of a type manager. The modules define data as a type, allocate memory for that type
and return not the data but an identifier or pointer to that type. This modularity is provided
throughout SunView where classes of objects (panels, panel_items, canvases) are defined
by a set of library routines and all that is returned to the programmer is an identifier or
handle. The programmer knows the types and the operations associated with the identifier
and that is all that is required to manipulate the object.

The standard practice in C is to partition programs into modules which hide data. This
is done by defining a separate include file containing only the declarations required for
external use. All other data is declared static or private to that module thereby achieving
another degree of modularity. In addition to the language choice and environment

restriction, extensive modifications of the BATMAN and ROBIN code had to be made.

B. MODIFICATIONS TO PACKAGES
REFARB is intended to be a stand-alone interactive editor and as such does not require
any of the simulation function provided by BATMAN. This includes the use of the

simulation engine, and the detection, movement and update models.

24

The requirement for a user database was also irrelevant because of the multi-user nature
of RESA. All performance measures within the game are group oriented instead of
individual. As such, there is no “login” requirement for REFAB as in BATMAN and
ROBIN.

REFAB is not a straight translation from BATMAN and ROBIN; the functions for
configuring Red raids and Blue task forces are divided between BATMAN and ROBIN.
For REFAB, the configuration and loadout were centralized into the force phase as it is

currently in FORCE. Table 1 lists the packages deleted from BATMAN and ROBIN.

Table 1 - BATMAN AND ROBIN PACKAGES DELETED

C Modules and Header Files Deleted
alert.c,.h detect.c,.h engine.c,.h
jtids_antenna.c,.h jtids_antenna_load.c,.h jtids_conn.c,.h
jtids_hooks.c,.h jtids_network.c,.h number_pad.c,.h
plat_detect_funcs.c,.h plat_list_funcs.c,.h plat_update_funcs.c,.h
playback.c,.h robin_defcon.c,.h robin_manage.c,.h
show_colors.c,.h stats.c,.h stats_compute_funcs.c,.h
stats_notify.c,.h stats_update_funcs.c,.h stats_verfiy.c,.h
status.c,.h user_db_access.c,.h user_funcs.c,.h

REFAB uses the Panel_win, Canvas_win, and Popup_panel packages as a basis of
presentation for the user. The Panel_win and Canvas_win packages were used without
modification. The Popup_panel was modified to allow the use of multiple text items. A
single masked text item was provided with BATMAN and ROBIN as a password tool. The

designer can now provide popup panels which present multiple textual input fields.

C. WINDOW LAYOUT

Central to the REFAB interface is the use of windows. The build function within
REFAB provides a screen consisting of three horizontal SunView panels as depicted in
Figure 6. The bottom panel is a status panel which provides current system settings of the
name of the open database and the name of the open charactenistics file. Additionally, a
choice item is provided to alter the step increment of sliders in the workspace panel.

Additional status features will be added in the future as the interface expands.

Editor_panel_win

Workspace_panel_win

Build_status_panel_win

Figure 6 -Build Function Screen Layout
The top panel provides buttons representing the BUILD program control orders PRINT
and BYE as shown in Figure 7. The WRITE order was made obsolete by the use of a direct
manipulation interface and as such was deleted. To preserve the idea of a “modeless”
environment, a button was implemented to access a menu of object access orders. The

OPEN button (currently not shown) presents a menu of objects when pressed. Once an

26

«w [T R (0

SEl 2(90)3S104 W

R [189) :{2u)basy N -
o o TR [81) i(eR)SIoUN 8C -
- - 2 (WP)SI0UY 62
- 1 (9p)SI0UY §Z -
e :{(wp)sIovy oF
w w [TTTTTRNRE (651 C(WIStou 81 -
@« » TTTREER (p1] (w)sioux g

» osion g

{as]

» TR DA

» [T TR su

» TR)

« » LGSR o)

SRR 1PI0L XEN

1(sa1 1e)abues wpydajag

1(yu)obiuea volyeassissel)

1 (4p)U0IIIS SSALD Jepey

I(S)IoNY)pIads xey

SLYCLULUSE S BREELEL R 1S :doas 3104y diyg 32j14 uadg
o« » [TR (e8] :()wbley euuatuy
iH tameu 3}ns weo)
o w TR (es] :()1uBtay euualuy A ssed abeseq anN
ZAZED aweu Jawsk(sepey
S3A LY 1914e) JeAR JUDSIUEWR JINE -aweu

(LY ©uos
@ m [T TR fezt] :()iubien euuajuy

%psas zawed Ws3/Jepey S3p > RLgRLiEAR JRpRS voydadag :avey 308

$213512830€4BYS LEu0(1dg

boyd 1J05U3S paads

04k :sosuas Buipean

NAD tadAy
s o :hs0bayeg
9s120J33u3 :5sseqd

$3L3S 149338 IRY3 paJsinbey

ndut pavogdedy/asnou 1Jo] Y3Ia S211ISTU330RARYD 3I1P]

EETERN

Figure 7 -Build Function Display with Workspace Open

27

object is selected, the button is cleared from the display. This protects the user from trying
to open two characteristics files at once. Additionally, a second row of buttons representing
the characteristics control orders is displayed giving the user the functionality of locating
objects and editing their characteristics. Once the user is through editing an open file,
REFAB utilizes the same command as BUILD, BYE. This toggles the OPEN button back
on, the characteristics control orders off, and updates the status panel. Exiting REFABs
build function is accomplished in the same manner as BUILD by using the BYE button.

The middle panel, the workspace, provides a form-filling dialogue of text-items,
sliders, and choice items for editing an open characteristics file. The layout of the
workspace panel is characteristics file dependent, but at this time only the ship
characteristics can be displayed. This dialogue affords the user a more insightful
presentation of the required and optional characteristics, and a graphic depiction of the
range or choice of value- ™ .oice items are used to limit selections to specific names, and
sliders are used to pre-.at the user with a graphic depiction of the range of numeric values,
a function not provided within the RESA system.

The force function within REFAB provides a screen consisting of a SunView canvas
for displaying a theater level map, and three panels which border the canvas top, bottom
and right side. Figure 8 illustrates the layout for this function. Map canvas provides a two
dimensional theater-level map using the World Database II map package from the Applied
Physics Lab at Johns Hopkins. The map package is a good visual cue for the tactical state
of deployment of objects. Although this is not new to RESA, this functionality has never
been afforded to the pregame processes. Users currently have to guess locations or use
previously generated scenarios to define scenario initial conditions. Manipulation of the
canvas is accomplished through the use of the tools panel. The final prototype layout for

the force function is depicted in Figure 9.

28

-

The tools panel provides a series of buttons labeled with picture images, which aid in
the manipulation of the map canvas. This panel currently provides buttons to remove
objects form the canvas, a zoom function, and a button to move and change the theater

displayed.

Control_panel_win

Loadout_panel_win

Tools_panel_win \\

/ Map_canvas_win

/7

Force_status_panel_win

Figure 8 -Force Function Screen Layout

As in the build function, the bottom panel is again the status panel and displays the
currently opened database and scenario files, and positioning information (latitude,
longitude, theater) of task forces. The right panel currently is utilized as a loadout work area
for allocating assets to task forces, both RED and BLUE. Future enhancements will utilize
this panel as a general work area for graphically defining the other force scenario
parameters for wargame initialization.

The top panel is again utilized as a direct manipulation platform of buttons for accessing

the force program and scenario control orders. The control order ENTER is utilized to enter

29

Tuo o0 gl i3ed upaqql4e3 s 1o1ea41]

\ o

—-———_--'7 B 1RVK?—

u.!..x\

oun*6g saspqeied 1.0 sC1.4RUd08 00" 08~

!
|

A7

se

rZ2 oy
71N
(ERERY
e

- -

a0 0Ne - Lo D CLERR

Figure 9 .FORCE Function Display

30

instances of objects for the initial conditions of the wargame. Objects will be displayed on
the loadout panel, dragged on the map canvas, and positioned in the warfare environment.
The map canvas will be utilized in the same manner as a drawing utility where the user can
perform such graphic functions as “drawing’ paths for ships, tracks for air, corridors for

communications jamming, and ship communications paths.

D. MODIFICATIONS OF DATA STRUCTURES

Central to BATMAN and ROBIN is a solitary data structure for maintaining control of
the window objects, icons, simulation engine nodes, painting operations, fonts, and Blue
and Red platform force lists. This data structure is shown in Appendix C. It is apparent that
this structure is a depository of many global variables. Because FORCE and BUILD are
essentially separate functions, no requirement exists to tie these functions together via one
data structure. Global variables and defined SunView objects in REFAB are kept separated
from the scenario data structures and database structures. Figure 10 identifies the structure
used for ship objects in REFAB. Note that the variables heading_sensor, speed_sensor,
radar, jammer, sonar, commsuite, weapon_type, and missile_type are all pointers to other
structures defined by their respective characteristics file.

Another aspect of change to data structures was the use of the defaults database.
BATMAN and ROBIN use the defaults database exclusively for object characteristics. But
because the models in RESA are so much more extensive, new data structures had to be
developed. The “.defaults” file is a good tool for storing system parameters that are used
once to initial the system and allow the user to customize the interface. He . ever, the
continuous disk access required to read the database each time an object is referenced
produces far too much overhead and is very inefficient. No attempt was made to perform a
straight translation from the Fortran data structures of RESA which consists exclusively of

arrays. “C” provides a very elegant and efficient method of linking data through the use of

31

record structures and pointers. REFAB uses a list of records for each characteristics file and
a list of records with pointers to the characteristics structures for scenario generation.
Figure 9 depicts this concept for the ship objects. Fields have been added to the REFAB

structures to access SunView pixrects or icons. Once a named object is initialized, its name

typedef struct ship_head {
char *class;
char *cat;
char *type,
Pixrect *small_icon;
int maxspeed;
int radar_xsect;
Sensor_rec *heading_sensor;
sensor_rec *speed_sensor;
int class_range;
mt detect_range;
int local_tracks;
int BBNI6];
int BBN3[6]:
int NBN_freq{6];
int NBNJ6];
int deception; .
int Blip_enhance;
radar_rec *radar({8&];
int radar_antenna_hi[8];
jammer_rec *jammer;
int jammer_antenna_ht"J;
sonar_rec *sonar{6];
commsuite_rec *commsuite[12];
int commesuite_antenna_ht[10];
weapon_type *weapon[30];
missile_type *missile{30];
int nuc_damage_class;
}

Figure 10 -REFAB Ship Structure

or class can be looked up in the defaults database and the picture can be drawn on a

SunView ohject. In this way, icons can be easily added or replaced from outside the system.

)
ro

The method of implementation of pictures as icons typically in SunView is to define a
button with a picture image instead of a label. Then when the icon is selected, a defined
procedure is called to handle this event just as if a button had been pressed. This is depicted
in the tools panel in Figure 7.

To maintain the list of structures, extensive use is required of the list manager routines
provided with BATMAN and ROBIN. These routines provide a generic mechanism for

manipulating doubly linked lists.

E. ADDITIONAL FUNCTIONS

In addition to the display descriptions presented, the following design decisions were
made to present a consistent interface providing informative feedback and reducing short
term memory load. In keeping with the standard Sun usage, the left mouse is utilized for
“picking” objects, and the right mouse is used for menu access where applicable. Because
the middle mouse has no defined function and is often system dependent, REFAB uses it
for context sensitive help. Utilizing the functionality of popup panels acquired from
BATMAN and ROBIN, REFAB provides help panels for buttons and panels. Currently,
only the OPEN and ENTER buttons have help panels implemented as they are the only
orders currently tied to event procedures to handle user input.

SunView provides an event-driven interrupt handler for grabbing all user input for the
system. This capability allows the implementation of context sensitive help where each
panel and panel_item defines its own event handler which in turn displays related help
screens.

The event handler allows the system to identify which mouse buttons are pressed,
whether they are up or down, cursor position in screen coordinates and whether cursor is

stationary or being dragged. All of these capabilities aliow the user to obtain different

33

feedback depending on the actions performed and preserving the impression that the user
is in control.

System messages and errors are displayed with the same popup utility as the help
messages. In this way, error messages are not depicted as “finger pointing”; they are the
same as system wait messages and help message requested by the user. The design of the
popups naturally draws user attention and are turned off either by the system when the
system is through processing or by the user when he wishes to continue.

In addition to the user-requested help screens, both the build and force functions have
a prompt item in the control panel which is utilized to guide the user through the system
and minimize the requirement for system documentation. Prompts are utilized to ensure all
required parameters for an order are obtained from the user. In this way, difficult tasks can
be made easy by breaking them down into smaller easier to manage tasks. The user then
feels more in control and does not become frustrated with the system when he doesn’t know
what to do next.

Though the use of color is considered restrictive and leads to non-portable applications,
the use of color is applied in REFAB to make images more meaningful and guide the user
to appropriate information. Grouping related information through color coding retains the
usefulness and readability of the screen. Color is used in REFAB for the buttons and utilizes
the “traffic light” metaphor familiar to most users. Potentially dangerous commands, such
as KILL and STOP, are identified by a red button (Stop), commands which may require
some type of reversal action, such as BYE, are depicted in yellow (Caution) and commands
for normal system operation are shown in green (Go). In this way, the dialog yields closure
by associating a familiar color scheme with the feedback expected from buttons.

In REFAB, each button has its own menu associated with it. Currently these menus are
static because of the state of the database translation. However in the future

implementations, menus of object names and classes will have to be generated dynamically

34

depending on the database in use and the state of the scenario generation. Menus are
designed to yield closure where actions expected first are listed at the top and actions
expected last are listed at the bottom. For example, users are expected to define ships before
aircraft and boats, and as such “Ships” appears at the top of the menu above “Air” and
“Boat” in the ENTER order.

BATMAN and ROBIN prov'ides another private popup panel, a number pad, for
identifying the number of objects required in the scenario. The number pad is a good
graphic application but does not provide the simplicity required for REFAB. The BUILD
database consists of numerous integer variables which have varying ranges and default
values. If the user has to look up “reasonable” values for these variables every time an
objects characteristics are changed, then REFAB is not supporting the user. The interface
should provide the user with that information. REFAB utilizes a slider module which
defines a generic slider with a minimum and maximum value, a label, and two arrow
buttons to add in moving the slider value in fixed increments. The increment steps can be
set through the status panel. In this way the user is presented with a reasonable scale of
values and not a mechanism for arbitrary choices. The slider mechanism can be used in the
force phase to display reasonable loads for aircraft as well as air wing configurations for

carriers or shore bases.

35

V. RECOMMENDATIONS

A.FUTURE RESEARCH

The overall goal of this research was to develop a first draft prototype replacement of
FORCE and BUILD outlining the types of graphical depiction possible. Because this is a
first draft, REFAB has certain limitations which need to be addressed with future research.

Currently, the database is designed as a linked list utilizing the list manager. For a
database as large as required for BUILD, this structure is inappropriate and the list manager
will have to be redesigned for structures typically used to store and access databases, such
as binary trees, B-trees, or AVL trees.

Because of the limited nature of the database, some of the menus have been
implemented as static structures. The menus for listing of database object names and
classes is also currently a static structure. To allow the use of a number of different
databases, REFAB will have to be redesigned to allow for dynamic building of the menus.

The World Database II maps and associated object libraries can currently only be
utilized on a Sun-4 SPARC station with a color graphics display. If REFAB is to be
portable to other Sun architectures or translatable to other windowing environments, then
the source will have to be obtained for the map libraries. Additionally, the functionality of
the map package is limited to the routines used in BATMAN and ROBIN. The object

modaules provide no reference as to the description or parameters required of other routines.

B. CONCLUSIONS
The development of REFAB has demonstrated the feasibility of enhancing the interface
of the pregame processes of RESA. This first phase of the prototype design has provided

an effective medium through which requirements analysis can be implemented and

36

encourages the identification of requirements modifications and enhancements. The
designer and user can now refine the requirements until a functional model is produced
which supports all of the salient, critical features of FORCE and BUILD. Through the use
of the Sun workstation and bit-mapped graphics, REFAB presents an interface which is
intuitive and will require a minimal learning curve. The object-oriented approach has
produced a program which is modifiable, general, supports abstraction and is extensible.
The use of UNIX operating system also provides an affective vehicle for networking and
process sharing which will be essential in integrating REFAB with RESA. REFAB has
great potential of providing users with an interface for RESA which will yield a more
satisfying and rewarding wargaming session.

Through the use of consistency, users familiar with RESA are presented with a graphic
portrait of the available orders in FORCE and BUILD in a consistent layout. The top of the
screen provides a panel for user orders, the bottom a panel for current system status items.
The name of the database is even presented in the same place. Both orders panels also
provide a system prompt area. The buttons are of a consistent size and use a standard
coloring scheme. The buttons are also consistent with RESA by utilizing the same naming
conventions for orders and characteristics. The characteristics are also consistent with real
world naming and values. Except for the system prompt which is designed to unobtrusive,
all messages are provided in a consistent format by use of the popup panel.

The implementation of the style of dialogue presented with the REFAB interface could
significantly reduce user training requirements and provide users with a more productive
wargaming experience emphasizing decision-making and not keyboard entry corrections.
Additionally, an interface such as REFAB could reduce the need for operator personnel
allowing users easier interaction with the system, and reduce resource costs utilizing a
single bit-mapped display to provide all information through windows instead of three

different displays. It is hoped that his preliminary design will be reviewed by the RESA

37

facility at NOSC as a benefit to RESA and will aid in the current efforts of defining the

direction of wargaming in the future.

38

APPENDIX A.

RESA PLATFORM AND SYSTEM CHARACTERISTICS

The BUILD database is configured from fifteen files. The database name consists
of five alphanumeric characters starting with an alphabetic character. This character string
replaces the XXXXX in the fifteen files listed in this appendix. Each characteristic tuple is
defined by a field name, the number of instances allowed, a range of values, and a descrip-
tion of the characteristic. A minus(-) sign preceding the number of instances indicates an

optional characteristic.

Object: Aircraft

Filename: XXXXXC.AIR

Field Number Range of Values Description

NAME 1 alphanumeric Name of aircraft

CAT 1 JETIPROPHELO Aircraft category (defined type)

VMAX 1 0:3000 Maximum speed (knots)

CLIMB 1 0:10000 Maximum rate of climb (feet/min)

AMAX 1 0:150000 Maximum obtainable altitude (feet)

XSECT 1 0:20 Radar cross section (dB)

VCRU 1 0:1000 Optimal speed for maximum range (knots)

JP 1 0:300000 Amount of aviation fuel (1bs)

LDELY 1 0:10 Launch delay for appropriate aircraft (min)

HDG 1 alphanumeric Name of heading sensor

SPD 1 alphanumeric Name of speed sensor

MNFAL 1 0:1000 Mean time before failure (mi-;

MNMNT 1 0:1000 Mean time for unscheduled maintenance (min)
SDMNT 1 0:1000 Standard deviation unschedvled maintenance (min)
MNRPR 1 0:1000 Mean time to repair (min)

MAINT 1 0:1000 Flight time between scheduicu niaintenance (min)
RDELY 1 0:100 Routine servicing and refueling delay time (min)
ODELY 1 0:100 Change-of-ordnance delay (min)

PBLCH 1 0:100 Prob of a sucessful launch (%)

PBREC 1 0:100 Prob of a sucessful recovery (%)

PBFAL 1 0:100 Prob of a system failure (%)

SYSFL 1 0:100 Prob of a sys failure while in flight (%)

DTRNG 1 0:500 Range in which the platform can be detected (miles)
CLRNG 1 0:500 Range in which the platform can be classified (miles)
TRKS 1 0:100 Number of local tracks (qty)

LOTSP 1 0:4095 Loiter speed for station (knots)

VECSP 1 0:1023 Vector speed for engaging (knots)

HFDF -1 alphanumeric Name of HFDF

FLIR -1 alphanumeric Name of Foward-Looking Infra Red (FLIR)
NAV -1 alphanumeric Name of navigational system

RDESM -6 alphanumeric Name of sensor(s) carried

JAMMR -1 alphanumeric Name of jammer carried

COMMS -12 alphanumeric Name of communication suite(s) carried
COMMJ -4 alphanumeric Name of communications jammer(s) carmed
SONAR -6 alphanumeric Name of sonar(s) carried

NDCLS -1 1.3 Nuclear Damage Class (1-B 2-F 3-H)

DNWND -1 YESINO Can land downwind? (YES/NO)

ISAR -1 YESINO Ship-ID @ min (80 nmi horizon)

Z00M -1 1:4 Visual classification range multiplicr

40

Defined type: HELO

Field Number Range of Values Description

LBSKT 1 0:100 Pounds per knot

LOITF 1 0:4095 Loiter fuel (preprx)
HOVER 1 0:16000 Hover factor for max range
Defined type: PROP ‘

Field Number Range of Values Description

FLXPT i 0:100 Exponential factor for fuel
FLPRX 1 0:4095 Prefix factor for max range
LOTFL 1 0:16000 Loiter factor for max range

Defined type: JET

Field Number Range of Values Description
__ g
FLXPT 1 0:100 Exponential factor for fuel
FLPRX 1 0:4095 Prefix factor for max range
LOTFL 1 0:160000 Loiter factor for max range

Object: Communications Pairs

Filename: XXXXXC.CMP

I Field Number Range of Values Description

NAME 1 alphanumeric Name of Communications pair

COMMS 1 alphanumeric Name of commsuite for sending

COMMR 1 alphanumeric Name of commsuite for receiving at next node
LOS 1 YES INO Limited to line of sight?

MU 1 1:2000 Capacity of comm circuit (messages/hr)

RHO 1 0:100 Path utilization factor (%)

LIFE 1 1:500 max time to deliver a msg to COMMR (minutes)
RANGE 1 0:15000 1 ACOUS Maximum range for communication (miles)

FREQ 1 3:3000000 Frequency of commpair (kHz)

CRYPT 1 YES INO Is it encrypted?

JMRSN 1 5:50 Sensitive to jamming (qty)

SPEED -2 1:30 Two max speeds: in-layer below-layer (knots)
WIRE -2 SENDIRECR Define if SEND or RCVR of comm needs a wire
WBUOY -2 SEND | RECR Define if SEND or RCVR of comm needs a Wbuoy
MAST -2 SEND | RECR Define if SEND or RCVR of comm needs a mast
MISSN -1 YES INO A/C mission overide for relay

ARC -2 SEND | RECR Range of sender off receivers course

RCVRC -1 0:180 Receiver course off N/S where comm possible (degrees)

41

Object: Communications Jammers

Filename: XXXXXC.CMJ]

Field Number Range of Values

Description

|

NAME 1 alphanumeric Name of comm jammer

RANGE 1 0:500 Max range of comm jammer

POWER 1 0:10000 Output power (Watts)

GAIN 1 0:20 Antennagain (dB)

COVER 1 0:100 Bandwidth (%)

FREQ 10 1:10000 Center frequencies and (MHz)
1:50000 Bandwidths (Hz)

DELAY 1 0:10 Delay factor and (usec)
1:50000 Bandwidth (Hz)

MNFAL -1 0:10000 Mean time between failure (min)

MNRPR -1 0:10000 Mean time to repair (min)

Object: Communications Buoys

Filename: XXXXXC.CMB

Field Number Range of Values Description

NAME 1 alphanumeric Name of the commbuoy

LIFE 1 1:200 Buoy life when deployed (minutes)

MULTI 1 YESINO Single or muliiple message buoy?

COMM]1 1 alphanumeric Name of 1st communication suite(s) carried
COMM2 1 alphanumeric Name of 2nd communication suite(s) carried
MXNFAL 1 0:10000 Mean time between failure (min)

MNRPR 1 0:10000 Mean time to repair (min)

Object: Communications Suites

Filename: XXXXXC.CMS

Field Number Range of Values

Description

NAME | alphanumeric Name of commsuite
BAND 1 LAND | LF | HF Frequency band
HFLRI | UHF ! VHF
VLF 1 ACOUS
TYPE i SEND | RECV IBOTH Type of commsuite
FREQ 1 1:1000 Center frequency (MHz) and
1:3000000 Bandwidth of commsuite
XPOWR 1 1:1000 Output power of transmitter (Watts)
XGAIN 1 1:10 Transmitter antenns gain (dB)
RGAIN 1 1:10 Receiver antenna gain (dB)
HOPPR 1 YES INO Does equipment employ frequency hopping?
PULSE 1 Signal pulse length (msec)
MNFAL 1 0:10000 Mcan time between failures (min)
MNRPR 1 0:10000 Mean timc to repair (min)

Object: Cruise Missiles Filename: XXXXXC.CRU

Field Number Range of Values Description

NAME 1 alphanumeric Name of missile

VCRU 1 0:2500 Average speed (mph)

FLDUR 1 0:300 Maximum flight duration (minutes)

EPU 1 0:100 TNT equivalent payload (hundreds of 1bs)

RATE 1 0:10 Firing rate (missiles/min)

ACRU 1 0:100000 Altitude at which a missile travels (feet)

XSECT 1 0:20 Radar cross section (dB)

SEEKR 1 RADAR | RDESM Seeker type carried

RADAR 1 alphanumeric Type of radar carried

SKRNG 1 0:200 Maximum detection range (nautical miles)
Ne 1 0:90 Max view arc of missile sensors (degrecs)

PROTL 1 NEAR | FAR Target select protocol

PHD 1 0:100 Deception effectivity (%)

PHB 1 0:100 BLIP effectivity (%)

PHC 1 0:100 CHAFF effectivity (%)

PHJ 1 0:100 Jamming effectivity (%)

PL 1 0:100 Probability of a launch (%)

PH 1 0:100 Probability of a hit (%)

DEPTH 1 0:100 Maximum launch depth of a missile (feet)

HDG 1 alphanumeric Name of heading sensor

SPD 1 alphanumeric Name of speed sensor

NAV -1 alphanumeric Name of navigation aid

EMIT -10 alphanumeric Name of emitters recognized

TSHIP -1 YES {NO Can this missile attack ships/subs?

TAIRC -1 YESINO Can this missile attack aircraft?

TCRUZ -1 YES INO Can missile attack cruise missiles?

BURST -1 AIR I SURF I SUBSU Burst type (Nuclear)

BDPTH -1 SHALL | DEEP Depth of subsurface burst (Nuclear)

YIELD -1 0:32767 Yield of Nuclear burst (kt)

Object: Radar/ESM Jammers Filename: XXXXXC.JAM
Field Number Range of Values Description
NAME 1 alphanumeric Name of Jammer
POWER 1 0:25000 Power(dB/watt)
RANGE 1 0:500 Maximum effective range (nautical miles)
GAIN 1 0:25000 Antenna Gain (dB)
FREQ -10 1:32393 Center freq and bdwth of jammer (MHz)
MNFAL -1 0:300 Mean time between failures (minutes)
MNRPR -1 0:300 Mean time to repair (minutes)
Object: Navigation Aids Filename: XXXXXC.NAV
Field Number Range of Values Description
e
NAME 1 alphanumeric Name of navigational device
CAT 1 HDG ISPD I DR Type of navigational device (defined type)
OMEGA I TRANS | OTRAN
MNFAL -1 0:10000 Mecan time between failures (minutes)
MNRPR -1 0:10000 Mean time to repair (minutes)

Defined type: HDG

Field Number Range of Values Description
o R
HERR 1 0:1000 Sid dev of heading error (deg/100)

Defined type: SPD

Field Number Range of values Description
e
SERR 1 0:5000 Std dev of Speed sensor error (knots/100)

Defined type: DR, OMEGA, TRANS, OTRAN

Field Number Range of Values Description

LTRSD 1 0:100 Latitude bias error rate (yds)

LGRSD 1 0:100 Longitude bias error rate (yds)

LTHFX 1 0:100000 Fixed human error comp of lat (yds)

LTHSD 1 0:20000 Std dev human error comp of 1at (yds)

LGHFX 1 0:100000 Fixed human e:tor comp of long (yds)

LGHSD 1 0:20000 Siud dev human error comp of long (yds)
44

Object: Surveillance Satellites Filename: XXXXXC.SAT

Field Number Range of Values Description

SWATH 1 1:3000 Radar swath width (miles)
SENSR 1 alphanumeric Name of sensor carried

DUTY 1 1:90 Duty cycle per orbit (degrees)
HORBW 1 0:359 Horizontal beamwidth (degrees)
VERBW 1 0:359 Vertical beamwidth (degrees)

Object: Radar/ESM Systems Filename: XXXXXC.SEN

I Field Number Range of Values Description
N s
NAME 1 alphanumeric Name of sensors
CAT 1 RADAR | ESM Type of sensors (defined type)
BDWTH 1 1:20000 Recevier bandwidth (MHz)
NSFIG 1 0:2000 Radar noise figure (dB)
GAIN 1 1:2000 Antenna gain (dB)
Defined type: RADAR
Field Number Range of Values Description
R D
SRATE 1 0:4320 Scan rate (scans/min)
FREQ 1 1:20000 Sensor operating frequency (MHz)
PRR 1 0:9999 Pulse repetition rate (pulses/sec)
BEAM 1 0:3600 Beamwidth (tenths of degrees)
SSECT 1 0:360 Scan sector (degrecs)
PFA 1 41618110 Probability of false alarm (%)
FUNCT 1 SURF | AIR I MISS Function of radar
FIRE | APPRO
RANGE 1 0:500 Maximum detection range (nautical miles)
POWER 1 1:2000 Peak power (dB)
MFUNC -4 0:10 Mulii-function radar parameters: MODE
alphanumeric ENOTE, FCODE
0:500 XCNTD
0:20000 MFREQ
0:9999 MPW
0:9999 MPRR
0:4320 MSRTE
alphanumeric STYPE, POLAR
MNFAL -1 0:4320 Mean time between failure (minutes)
MNRPR -1 0:4320 Mcan time to repair (minutcs)

Defined type: ESM

Field Number Range of Values Description
HFREQ 1 1:20000 Receiver high freq cutoff (MHz)
LFREQ 1 1:20000 Receiver low freq cutoff (MHz)
LOSS 1 1:2000 System loss (dB)
BRERR 1 0:12 Std development of bearing error (degrees)
MNFAL 1 0:4320 Mean time between failures (minutes)
Object: Ships and Submarines Filename:XXXXXC.SHP
Field Number Range of Values Description
CLASS 1 alphanumeric Class of the ship or sub _
CAT 1 SURFINSUBIDSUB Type of ships (defined type)
TYPE 1 alphanumeric Type of ship or submarine
VMAX 1 0:50 Maximumspeed(knots)
XSECT 1 0:500 Radarcrosssection(dB)
HDG 1 alphanumeric Name of heading sensor
SPD 1 alphanumeric Name of speed sensor
CLRNG 1 0:500 Range at which a platform can be classified (miles)
DTRNG 1 0:500 Range at which a platform can be detected (miles)
TRKS 1 0:250 Number of local tracks
BBN 1 0:500 BB @2000 Hz noise at 05/10/15/20/25/30 knots (dB)
BBN32 1 0:500 BB @300 Hz noise at 05/10/15/20/25/30 knots (dB)
NBN -6 0:999999 Signature line frequencies (Hz)
0:500 NB noise (dB)
HFDF -1 alphanumeric HFDF name
DECM -1 YESINO DECEPTION (RADAR) available?
BLIP -1 YESINO BLIP enhancment available?
RDESM -8 alphanumeric Name and
0:3000 Height of sensor(s) carried (feet)
JAMMR -1 alphanumeric Name and
0:3000 Height of jammer(s) carried (feet)
SONAR -6 alphanumeric Name of sonar(s) carried
COMMS -10 alphanumeric Name and
0:3000 Height of communicaticns suite(s) carried (feet)
WEAP -30 alphanumeric Name
AAMIASMIBOMB Type and
CIWSISAMISSMIGUN
0:10000 Qty of weapons carmicd
MISS -4 alphanumeric Types and
0:10000 Qv of cruise missile carried
NDCLS -1 1:5 Nuclcar Damage Class (1-cv,2-cg,3-dd,4-a,5-sb)

46

Defined type:SURF

Field Number Range of Values

m

Description

NAV 1 alphanumeric Name of navigational sensor
LCHRT 1 1:5 Standard flight deck launch rate (aircraft/mibn)
RECRT 1 1:5 Standard flight deck recovery rate (aircraft/mibn)
WAVE 1 0:3000 Wave height threshold for LCHRT and RECRT (feet)
LACOM 1 0:100 Lethal area ratio of comm equipment (%)
LASEN 1 0:100 Lethal area ratio of sensor systems (%)
LAWPN 1 0:100 Lethal area ratio of weapon systems (%)
LAFLD 1 0:100 Lethal area ratio of ship buoyancy (%)
LASPD 1 0:100 Lethal area ratio of ship max speed (%)
LAAIR 1 0:100 Lethal area ratio of parked aircraft (%)
RBOC 1 1:50 Firing rate per minute (rounds/min

1:10000 Number of rounds (gty)
BUOY -10 alphanumeric Name,

SONOICOMM Type, and

0:10000 Number of buoys carried (qty)
AIR -24 alphanumeric Name and

0:10000 Number of aircraft carried (qty)
Defined type:NSUB
Field Number Range of Values Description

R e

DRATE 1 0:1000 Dive rate (ft/min)
KEEL 1 0:3000 Keel depth (feet)
PSCOP 1 0:3000 Periscope depth (fect)
DR 1 alphanumeric Name of navaigational sensor
OMEGA 1 alphanumeric Name of navaigational sensor
NAV -1 alpharumeric Name of navaigational sensor
TORP -4 alphanumeric Name and

0:10000 Qty of torpedoes
WIRES -1 0:10000 Wire info for comm
WBUOY -4 alphanumeric Name and

0:10000 Qty of Wire Buoys for comm
NBUOY -4 alphanumeric Name and

0:10000 Qty of Non-Wired Buoy for comm

47

Defined type:DSUB
Field Number Range of Values Description
W
KEEL 1 0:3000 Keel depth (feet)
PSCOP 1 0:30600 Periscope depth (feet)
DR 1 alphanumeric Name of navigational sensor
OMEGA 1 alphanumeric Name of navigational sensor
NAV -1 alphanumeric Name of navigational sensor
TORP -4 alphanumeric Name and
0:10000 Qty of torpedoes
WIRES -1 0:10000 Wire info for comm
WBUOY -4 alphanumeric Name and
0:10000 Qty of Wire Buoys for comm
NBUOY -4 alphanumeric Name and
0:10000 Qty of Non-Wired Buoy for comm
BBD 1 0:500 BB @2000 Hz noise at 05/10/15/20/25/30 knots (dB)
BBD3 -1 0:500 BB @300 Hz noise at 05/10/15/20/25/30 knots (dB)
NBD -6 0:999959 Signature line frequencies (Hz)
0:500 Diesel NB noise (dB)

48

Object: Shore Bases

Filename: XXXXXC.SHR

Field Number Range of Values Description

NAME 1 alphanumeric Name of the shor~ hase
LAT 1 0:90 Latitude in Degrees and minutes
LONG 1 0:180 Longitude in degrees and minutes
JP 1 0:1000000 Amount of aviation fuel (1bs)
LCHRT 1 1:20 Standard aircraft launch rate (aircraft/min)
RECRT 1 1:20 Standard aircraft recovery rate (aircraft/min)
LACOM 1 0:100 Lethal area ratio for communications (%)
LAAIR 1 0:100 Lethal area ratio for aircraft parked (%)
LASEN 1 0:100 Lethal area ratio for sensors on base (%)
LASAM 1 0:100 Lethal area ratio for SAM sites (%)
LASTO 1 0:100 Lethal area ratio for deployable stores (%)
LAJP 1 0:100 Lethal area ratio for aviation fuel (%)
TRKS 1 0:250 Number of local tracks
HFDF -1 alphanumeric Name of HFDF system
RDESM -8 alphanumeric Name of sensor

0:3000 Antenna height (feet)
JAMMR -1 alphanumeric Name of jammer

0:3000 Antenna height (feet)
BUOY -10 alphanumeric Name,

SONO | COMM Types and

0:3000 Qty of buoys carried
COMMS -10 alphanumeric Name of commsuite

0:3000 Antenna height (feet)
CJAMR 4 alphanumeric Name of comm jammer

0:3000 Antenna height (fect)
MISS -6 alphanumeric Name and

1:3000 Qty of cruise miss. carried
WEAP -30 alphanumeric Name,

AAM | ASM | BOMB Types and

SSM ITORP I CIWS

SAM I GUN

1:3000 Qty of weapons carried
AIR -30 alphanumeric Name and

1:3000 Qty of aircraft

49

Object: Sonobuoys Filename: XXXXXC.SNB

Field Number Range of Values Description

NAME 1 alphanumeric Name of Sonar

CAT 1 PASS | ACT ICOMM Type of sonar (defined type)

LIFE 1 0:4320 Buoy life when deployed (minutes)
CFREQ 1 0:20000 Center frequency (Hz)

MNFAL -1 0:4320 Mean time between failures (minutes)
MNRPR -1 1:4320 Mean time to repair (minutes)

7 Defined type: PASS

| Field Number Range of Values Description
LFREQ 10:20000 |

1 Low end of band frequency (Hz)
HFREQ 1 10:20000 High end of band frequency (Hz)
HZBW 1 0:360 Horizontal beamwidth (degrees)
VRBW 1 0:90 Vertical beamwidth (degrees)
BRERR 1 0:90 Bearing err sid dev (degrees)
RD 1 -50:50 Recognition differential (dB)
DI0O 1 -30:30 Directivity indices @ 6 speeds 0- 60 degrees (dB)
DI60 1 -30:30 Directivity indices @ 6 speeds 60-120 de_ -ees (dB)
DIi20 1 -30:30 Directivity indices @ 6 speeds 120-180 degrees (dB)
OMNI 1 YES INO OMNI Directional buoy?
Defined type: ACT
Field Number Range of Values Description
LEVEL 1 0:1000 Source level (dB)
Defined type: COMM
Field Number Range of Values Description
LFREQ 1 10:20000 Low end of band frequency (Hz)
HFREQ 1 10:20000 High end of band frequency (Hz)
HZBW 1 0:360 Horizontal beamwidth (degrecs)
VRBW 1 0:90 Vertical beamwidth (degrees)
LEVEL 1 0:1000 Source level (dB)
RD 1 -50:50 Recognition differential (dB)
DI0O 1 -30:30 Directivity indices @ 6 speeds 0- 60 degrees (dB)
D160 i -30:30 Directivity indices @ 6 speeds 60-120 degrees (dB)
DI120 1 -30:30 Directivity indices @ 6 speeds 120-180 degrees (dB)

Object: Active and Passive Sonar Systems

Filename: XXXXXC.SNR

Field Number Range of Values Description
NAME 1 alphanumeric Name of sonar
CAT 1 TOWED | VDS | AHULL Type of sonar (defined type)

PHULL | COMM
CFREQ 1 10:20000 Center frequency (Hz)
MNFAL -1 0:4320 Mean time between failures (minutes)
MNRPR -1 0:4320 Mean time to repair (minutes)
Defined type: TOWED
Field Number Range of Values Description
LFREQ 1 10:20000 Low end of band frequency (Hz)
HFREQ 1 10:20000 High end of band frequency (Hz)
HZBW 1 0:360 Horizontal beamwidth (degrees)
VERBW 1 0:90 Vertical beamwidth (degrees)
BRERR 1 0:90 Bearing err std dev (degrees)
RD 1 -50:50 Recognition differential (dB)
DI0O 1 -30:30 Directivity indices @ 6 speeds (- 60 degrees (dB)
DI60 1 -30:30 Directivity indices @ 6 speeds 60-120 degrees (dB)
DI120 1 -30:30 Directivity indices @ 6 speeds 120-180 degrees (dB)
CABLE 1 0:99999 Cable Length (yds)
BBN 1 0:300 Broad Band Noise @ 6 specds (dB)
NBN1 1 0:300 Narrow Band Noise @ 6 speeds freq 10 Hz (dB)
NBN2 1 0:300 Narrow Band Noise @ 6 speeds freq 15 Hz (dB)
NBN3 1 0:300 Narrow Band Noise @ 6 speeds freq 20 Hz (dB)
NBN4 1 0:300 Narrow Band Noise @ 6 speeds freq 30 Hz (dB)
NBNS 1 0:300 Narrow Band Noise @ 6 speeds freq 40 Hz (dB)
NBN6 1 0:300 Narrow Band Noise @ 6 speeds freq 60 Hz (dB)
NBN7 1 0:300 Narrow Band Noise @ 6 speeds freq 80 Hz (dB)
NBNS 1 0:300 Narrow Band Noise @ 6 speeds freq 100 Hz (dB)
NBN9 1 0:300 Narrow Band Noise @ 6 speeds freq 125 Hz (dB)
NBN10 1 0:300 Narrow Band Noise @ 6 speeds freq 250 Hz (dB)
NBNI11 1 0:300 Narrow Band Noise @ 6 speeds freq 315 Hz (dB)
NBN12 1 0:300 Narrow Band Noise @ 6 speeds freq 630 Hz (dB)
NBN13 1 0:300 Narrow Band Noise @ 6 speeds freq 900 Hz (dB)
NBN14 1 0.300 Narrow Band Noise @ 6 speeds freq 1250 Hz (dB)
NBNI15 1 0:300 Narrow Band Noise @ 6 speeds freq 1600 Hz (dB)
NBN16 1 0:300 Narrow Band Noise @ 6 speeds freq 2000 Hz (dB)
NBN17 1 0:300 Narrow Band Noise @ 6 specds freq 2500 Hz (dB)
NBN18 1 0:300 Narrow Band Noise @ 6 speeds freq 3500 Hz (dB)
NBN19 1 0:300 Narrow Band Noise @ 6 speeds freq S000 Hz (dB)
NBN20 i 0:300 Narrow Band Noise @ 6 speeds freq 10000 Hz (dB)

51

Defined type: VDS

Field Number Range of Values Description

LEVEL 1 0:1000 Source level (dB)

Defined type: PHULL

Field Number Range of Values Description

LFREQ 1 10:20000 Low end of band frequency (Hz)

HFREQ 1 10:20000 High end of band fre juency (Hz)

HZBW 1 0:360 Horizontal beamwidth (degrees)

VERBW 1 0:90 Vertical beamwidth (degrees)

BRERR 1 0:90 Bearing err std dev (degrees)

RD 1 -50:50 Recognition differential (dB)

DIOO 1 -30:30 Directivity indices @ 6 speeds 0- 60 degrees (dB)
DI60 1 -30:30 Directivity indices @ 6 speeds 60-120 degrees (dB)
DI120 1 -30:30 Directivity indices @ 6 speeds 120-180 degrees (dB)
BBN 1 0:300 Broad Band Noise @ 6 speeds (dB)

NBN1 1 0:300 Narrow Band Noise @ 6 speeds freq 10 Hz (dB)
NBN2 1 0:300 Narrow Band Noise @ 6 speeds freq 15 Hz (dB)
NBN3 1 0:300 Narrow Band Noise @ 6 speeds freq 20 Hz (dB)
NBN4 1 0:300 Narrow Band Noise @ 6 speeds freq 30 Hz (dB)
NBNS 1 0:300 Narrow Band Noise @ 6 speeds freq 40 Hz (dB)
NBNé6 1 0:300 Narrow Band Noise @ 6 speeds freq 60 Hz (dB)
NBN7 1 0:300 Narrow Band Noise @ 6 specds freq 80 Hz (dB)
NBNS 1 0:300 Narrow Band Noise @ 6 speeds freq 100 Hz (dB)
NBN9 1 0:300 Narrow Band Noise @ 6 speeds freq 125 Hz (dB)
NBN10 1 0:300 Narrow Band Noise @ 6 speeds freq 250 Hz (dB)
NBN11 1 0:300 Narrow Band Noise @ 6 speeds freq 315 Hz (dB)
NBN12 1 0:300 Narrow Band Noise @ 6 speeds freq 630 Hz (dB)
NBN13 1 0:300 Narrow Band Noise @ 6 speeds freq 900 Hz (dB)
NBN14 1 0:300 Narrow Band Noise @ 6 speeds freq 1250 Hz (dB)
NBNI15 1 0:300 Narrow Band Noise @ 6 speeds freq 1600 Hz (dB)
NBN16 1 0:300 Narrow Band Noise @ 6 speeds freq 2000 Hz (dB)
NBN17 1 0:300 Narrow Band Noise @ 6 speeds freq 2500 Hz (dB)
NBN18 1 0:300 Narrow Band Noise @ 6 speeds freq 3500 Hz (dB)
NBN19 1 0:300 Narrow Band Noise @ 6 speeds freq S000 Hz (dB)
NBN20 1 0:300 Narrow Band Noise @ 6 speeds freq 10000 Hz (dB)

52

Defined type: AHULL

Field Number Range of Values Description

LEVEL 1 0:1000 Source level (dB)

MODE -3 DPIBBICZ Allowable operaating mode

Defined type: COMM

Field Number Range of Values Description

LFREQ 1 10:20000 Low end of band frequency (Hz)

HFREQ 1 10:20000 High end of band frequency (Hz)

LEVEL 1 0:1000 Source level (dB)

HZBW 1 0:360 Horizontal beamwidth (degrees)

VRBW 1 0:90 Vertical beamwidth (degrees)

RD 1 -50:50 Recognition Differential (dB)

DIOO 1 -30:30 Directivity indices @ 6 speeds 0- 60 degrees (dB)
DI60 1 -30:30 Directivity indices @ 6 speeds 60-120 degrees (dB)
DI120 1 -30:30 Directivity indices @ 6 speeds 120-180 degrees (dB)
BBN 1 0:300 Broad Band Noise @ 6 speeds (dB)

NBN1 1 0:300 Narrow Band Noise @ 6 speeds freq 10 Hz (dB)
NBN2 1 0:300 Narrow Band Noise @ 6 speeds freq 15 Hz (dB)
NBN3 1 0:300 Narrow Band Noise @ 6 speeds freq 20 Hz (dB)
NBN4 1 0:300 Narrow Band Noise @ 6 speeds freq 30 Hz (dB)
NBNS 1 0:300 Narrow Band Noise @ 6 speeds freq 40 Hz (dB)
NBN6 1 0:300 Narrow Band Noise @ 6 speeds freq 60 Hz (dB)
NBN7 1 0:300 Narrow Band Noise @ 6 speeds freq 80 Hz (dB)
NBN8 1 0:300 Narrow Band Noise @ 6 speeds freq 100 Hz (dB)
NBN9 1 0:300 Narrow Band Noise @ 6 speeds freq 125 Hz (dB)
NBN10 1 0:300 Narrow Band Noise @ 6 speeds freq 250 Hz (dB)
NBNI11 1 0:300 Narrow Band Noise @ 6 speeds freq 315 Hz (dB)
NBN12 1 0:300 Narrow Band Noise @ 6 speeds freq 630 Hz (dB)
NBN13 1 0:300 Narrow Band Noisc @ 6 speeds freq 900 Hz (dB)
NBN14 1 0:300 Narrow Band Noise @ 6 speeds freq 1250 Hz (dB)
NBNI15 1 0:300 Narrow Band Noise @ 6 speeds freq 1600 Hz (dB)
NBN16 1 0:300 Narrow Band Noise @ 6 speeds freq 2000 Hz (dB)
NBN17 1 0:300 Narrow Band Noise @ 6 speeds freq 2500 Hz (dB)
NBN18 1 0:300 Narrow Band Noise @ 6 speeds freq 3500 Hz (dB)
NBN19 1 0:300 Narrow Band Noise @ 6 speeds freq 5000 Hz (dB)
NBN20 1 0:300 Narrow Band Noise @ 6 speeds freq 10000 Hz (dB)

53

Object: Weapons Filename: XXXXXC.WEP

Field Number Range of Values Description l

NAME 1 alphanumeric Name of the weapon
CAT 1 ASM ISAM | AAM Type of weapon (defined type)
CIWS | BOMB [TORP
GUN IMINE
MXRNG 1 0:200 Maximum range (miles)
MNFAL -1 0:300 Mean time between failure (minutes)
MNRPR -1 0:300 Mean time to repair (minutes)
BURST 1 AIR | SURF | SUNSU Burst type (Nuclear)
DEPTH 1 SHALL | DEEP Depth of subsurface burst (Nuclear)
YIELD 1 0:32767 Yield of Nuclear burst (kt)
Defined type: ASM
Field Number Range of Values Description
PH 1 0:100 Probability of hit (%)
EPU 1 0:100 Equivalent payload units (1bs)
SALVO 1 1:50 Rounds per salvo
ARM -1 YES INO Anti radiation missile capability

Defined type: SAM

Field Number Range of Values Description

PK 1 0:100 Probability of Kill (%)
RADAR 1 alphanumeric Name of radar
SIMUL 1 1:50 Number of simultaneous engagments (qty)
VCRU -1 1:2000 Speed (knots)
Defined type: AAM

Field Number Range of Values Description

PK 1 0:100 Probability of Kill (%)
SALVO 1 1:50 Rounds per salvo
FRATE 1 1:50 Firing rate (qty/min)
Defined type: CIWS

Field Number Range of Values Description

PK 1 0:100

Probability of kill (%)

SIMUL 1 1:50

Number of simultanous engagments (qty)

Defined type: BOMB

Field Number Range of Values Description

PH 1 0:100 Probability of hit (%)

EPU 1 0:100 Equivalent payload units (hundreds of 1bs)
SALVO 1 1:50 Rounds per salvo

Defined type: TORP

Field Number Range of Values Description

PH 1 0:100 Maximum Prob Hit (%)

RPH10 1 100:60000 Range (yds) for 100% Prob Hit
RPH9 1 100:60000 Range (yds) for 90% Prob Hit

RPHS 1 100:60000 Range (yds) for 80% Prob Hit

RPH7 1 100:60000 Range (yds) for 70% Prob Hit

RPH6 1 100:60000 Range (yds) for 60% Prob Hit

RPH5 1 100:60000 Range (yds) for 50% Prob Hit

RPH4 1 100:60000 Range (yds) for 40% Prob Hit

RPH3 1 100:60000 Range (vds) for 30% Prob Hit

RPH2 1 100:60000 Range (yds) for 20% Prob Hit

RPH1 1 100:60000 Range (yds) for 10% Prob Hit

EPU 1 0:100 Equivalent payload units (hundreds of 1bs)
FRATE 1 1:50 Firing rate (rounds/min)

MXALT 1 0:1000 Max altitude for deployment (feet)
VCRU 1 1:2047 Speed (knots)

SUBS 1 YES INO Subsurface target only?

Defined type: GUN

Field Number Range of Values Description

RPH10 1 100:60000 Range (yds) for 100% Prob Hit
RPH9 1 100:60000 Range (yds) for 90% Prob Hit

RPH8 1 100:60000 Range (yds) for 80% Prob Hit

RPH7 1 100:60000 Range (yds) for 70% Prob Hit

RPH6 1 100:60000 Range (yds) for 60% Prob Hit

RPHS 1 100:60000 Range (yds) for 50% Prob Hit

RPH4 1 100:60000 Range (yds) for 40% Prob Hit

RPH3 1 100:60000 Range (yds) for 30% Prob Hit

RPH2 1 100:60000 Range (yds) for 20% Prob Hit

RPH1 1 100:60000 Range (yds) for 10% Prob Hit

EPU 1 0:100 Equivalent payload units (hundreds of 1bs)
SALVO i 1:50 Rounds per salvo (qty)

SIMUL 1 1:50 Number of simultanous engagements
VCRU 1 1:2047 Muzzle speed of projectile (knots)

35

Defined type: MINE

Field Number Range of Values Description
EPU 1 0:100 Equivalent payload units (hundreds of 1bs)
MXALT 1 0:1000 Max altitude for deployment (feet)

56

Appendix B.

BUILD COMMAND GRAMMAR

n= - "is denoted by"
{) - "zero or more occurances of"
[] - optional parameter
() - system provided user prompt
I - "or"
< > - -non-terminal symbol
CAPS - terminal symbol

- multiple parameters

<BUILD_order>
= <program_control_order>
| <characteristics_control_order>

| <object_access_order>

<program_control_order>
»= BUILD
| PRINT [<characteristics_parameter>]
I WRITE [<characteristics_parameter>]
| BYE

<characteristics_control_order>
::= FIND <object_name>

| SAVE

I LIST

I MORE

57

I NAME

I CLASS

I KILL

| DELETE <delete_parm>
| HELP <help_parm_list>

<object_access_order>
:= AIR I COMMBOUY | COMMPAIR | COMMJAMMER | COMMSUITE
| CRUISE MISSILE | JAMMER | NAVAID | RADAR/ESM |
| SURVSAT | SHIP | SHORE BASE | SONAR | SONOBUOQY | WEAPON

<characteristics_parameter>
:= AIRICOMMBOUY | COMMPAIR | COMMJAMMER | COMMSUITE
I CRUISE MISSILE | JAMMER | NAVAID | RADAR/ESM | SURVSAT | SHIP
| SHORE BASE | SONAR | SONOBUOY | WEAPON

<delete_parm>
= ENTRY

| <name_of_characteristic>

<help_parm_list>
= <help_parm> <help_parm_list>
| <help_parm>

<help_parm>
1= <program_control_order>
| <object_access_order>
| <characteristics_control_order>

| <name_of_characterisitic>

58

FORCE COMMAND GRAMMAR

<FORCE_order>
::= <program_control_order>

| <scenario_control_order>

<program_control_order>
= FORCE
| STOP
| BYE

<scenario_control_order>
;= ENTER <force_scenario_parameter>
| DELETE <delete_parameter>
I PRINT <print_parameter>

<forcz_scenario_parameter>
::= SHIP <task_no> <ship_name> (class) <class> POSITION <latitude>

<longitude> (course) <course> (speed) <speed> DEPTH <depth>

| SHIP <task_no> <ship_name> (class) <class> STATION (ON)
<guide_name> (bearing) <bearing> (RANGE) <range>

| BASE <task_no> <base_name>

I BOAT (boat name) <boat_name> (class) <class> (at)
<base_name/ship_name>

I AIR (maint_log_side_number_id) <id> (seq) <sequence_number>

(quantity) <quantity> (of) <aircraft_type> (base_name)
<base_name> (time_flown) <time_flown> (up_time) <up_time>

59

COMMPATH (named) <name> (node) <number> MU <mu> RHO <rho> PAIR

<name>

COMMIJAMMER DEFINITION (minimum j/s) <j/s> (increment)

<j/s_increment>

COMMJAMMER VALUE (j/s) <j/s> (mu/rho) <mu_rho>

MEMBER (platform) <force_name> (to_paths) <commpath_1> ...

<commpath_4>

CIRCUIT <circuit_number> (as commpath) <commpath_name>

REPORT (policy_for) <BLUEIORANGE> (named) <policy_name>
(using_circuit) <nr> (or_circuit_nr) <nr> (violate_emcon)
<YESINO> (intervals_for_position) <mins> (ship_tracks) <mins>

(air_tracks) <mins> (esm_tracks) <mins>

EMCON (plan_for) <BLUEIORANGE> (named) <name>
(allow_surface_search) <YIN> (air_search) <YIN> (approach)
<YIN> (airborne_radsr) <YIN> (active_sonar) <YIN> (hf_comm)
<YIN> (hf_low_risk) <YIN> (vhf_or_uhf) <YIN>

ESM (fingerprinted_emitter) <emitter_name_1> (for) <ship_name> ...

<emitter_name_4> (for) <ship_name>

PLAN (for) <BLUEIORANGE> (named) <plan_name>

{ <valid_wargame_order> } STOP

CLASSIFICATION (for_ship) <ship_name> (as) <name> (with_tonals)
<tonel> <tone2> <tone3>

60

ORDERS { <valid_wargame_order> } STOP

SEARCH (for) <BLUEIORANGE> (named) <plan_name>
{ <valid_wargame_order> } STOP

SONAR (region) <number> (environment) <number> (point_1)
<latitude> <longitude> (point_2) <latitude> <longitude>
(point_3) <latitude> <longitude> ... (point_6) <latitude>

<longitude>

SOSUS REGION <number> (mean axis length) <nmi> (sigma length)
<nmi> (boundary depth) <feet> (point 1) <latitude> <longitude>
(point 2) <latitude> <longitude> (point 3) <latitude>

<longitude> ... (point 6) <latitude> <longitude>

SOSUS SUBMARINE <class> (in_region) <nr> (when) <DEEPISHALLOW>
(prob detect) <pd1> <pd2> <pd3> <pd4> <pd5> <p6> (prob hold)
<pl> <pd2> <pd3> <pdd> <pd5> <p6>

HFDF (for base) <force_name> (row) <row_number> (prob detect)
<pd1> <pd2> <pd3> <pd4> <pd5> <pd6> <pd7> <pd&> <pd9> <pd 10>

SURVSAT (named) <satellite_name> (of type) <satellite_type>
(ground station) <ground_station_name> (altitude) <nmi>
(duty cycle utilization) <percent> ORBITAL (orbital period)
<minutes> (inclination degrees) <degrees> (minutes) <minutes>

(crossing time) <time> (at longitude) <longitude>

SURVSAT (named) <satellite_name> (of type) <satellite_type>
(ground station) <ground_station_name> (altitude) <nmi>
(duty cycle utilization) <percent> STATIONARY (at latitide)

<latitude> (and longitude) <longitude>

61

| WEATHER (for_region) <region_number> (wave_height) <feet>
(direction) <degrees> (wind_speed) <knots> (direction)
<degrees> (cloud_cover) <percent> (ceiling) <feet> (depth)
<feet> (visibility) <nmi> (category) <CLEARIFOGIHAZEIRAIN>

| REPORT (policy for) <BLUEIORANGE> (named) <policy_name> (circuit)
<circuit_numberl> (or) <circuit_number2> (violate EMCON)
<YESINO> (intervals for position) <minutes> (ship tracks)

<minutes> (air tracks) <minutes>

| REPORT (policy for) <BLUEIORANGE> (named) <policy_name> (circuit)
<circuit_numberl> (or) <circuit_number2> (violate EMCON)
<YESINO> (intervals for position) <minutes> (ship tracks)

<minutes> (air tracks) <minutes> FORCE <force_name>

[REPORT (policy for) <BLUEIORANGE> (named) <policy_name> (circuit)
<circuit_numberl> (or) <circuit_number2> (violate EMCON)
<YESINO> (intervals for position) <minutes> (ship tracks)
<minutes> (air tracks) <minutes> MISSION <AEW ASW | AIRTANKER
| CAP I DECOY | EW | JAMMER | RECONN | RELAY | RESCUE | SEARCH
| STRCAP I STRIKE | STTANKER | SURCAP | SURVEILLANCE>

| PROBHIT (against target type) <name> (with weapon type) <name>
(% prob hit) <percent>

<delete_parameter>
== FORCE <force_task_number>
| PLAN <BLUEIORANGE> <plan_name>
| SEARCH <BLUEIORANGE> <plan_name>
| ORDERS <order_numberl> ... <order_number8>
I REPORT <BLUEIORANGE> <policy_name>

| COMMPATH <commpath_name>

| MEMBER <platform_name> <commpath_name1> ... <commpath_name4>

! EMCON <BLUEIORANGE> <EMCON_plan_name>

| HFDF <base_name>

I SURVSAT <survsat_name>

| SOSUS REGION <region_number>

i SOSUS SUBMARINE <sub_class> <region_number>

| WEATHER <region_number>

| PROBHIT <target_type> <weapon_type>

| AIR <side_number_id> <beginning_seq_number> <quantity>

| ESM <emitter_namel> <platform_namel> ... <emitter_name4>
<platform_name4>

| COMMJAMMMER DEFINTION

I COMMJAMMER VALUE <js>

<print_parameter>
= ALL FORCES | UTILIZATION | COMMPATH | ESM | ORDERS | PLAN |
SEARCH
| REPORT | AIR | EMCON | HFDF | SOSUS | SURVSAT | WEATHER
| COMMJAMMER

63

APPENDIX C
BATMAN AND ROBIN SCENARIO STRUCTURE

#define NUM_THEATERS 12

#define NUM_SCEN_PER_THEATER 25
#define NUM_PLATS_PER_FORCE 150
#define MAX_NUM_STUDENTS 100

typedef struct plat_pair {
char name[30];
int number;

} PLAT_PAIR;

typedcf struct theater_files (

char scenario_location_name{80];

int num_scenarios;

int scenario_num{NUM_SCEN_PER_THEATER];
} THEATER;

typedef struct scenario_head {

struct theater_filcs all_theaters]NUM_THEATERS];

struct plat_pair red_plats[NUM_PLATS_PER_FORCE};

struct plat_pair blue_platsINUM_PLATS_PER_FORCE];

int scenarios_avail[NUM_THEATERS * NUM_SCEN_PER_THEATER];
char *student_names[MAX_NUM_STUDENTS];

int game_mode; /* BATMAN or ROBIN */

int engine_state; /* RUNNING, PAUSED or STOPPED */
int red_plats_active; /* TRUE or FALSE */

float engine_update_interval;

int engine_loop_count;

int canvas_down_click_x; /* the x coord of the last click is saved */

/* here becausc the canvas_ie positions */

/* change too fast for some applications */
int canvas_down_click_y; /* the y coord of the last click is saved */

/* here because the canvas_ie positions */

/* change too fast for some applications */
int canvas_down_click_code; /* the event ic_code is saved */

/* here because the canvas_i¢ positions */

/* change too fast for some applications */

int time_to_stop;

LIST_HEAD timer_nodes;

LIST_HEAD playback_nodes;

int ext_game_phase; /* LOADOUT, MAIN, SETUP, GRID, or STATS */
char master_password[STRING_LENGTH)];

char player_name[STRING_LENGTHJ;

char theater_rf[STRING_LENGTH];

char theater_name[STRING_LENGTH];

int theater_index;

int sp_vix,sp_vly;

int ximage, yimage; /* The x,y position for the pixwin */

int map_range; /* The current zoom factor of the map */

64

int grid_radius;
double vl_lat,vl_lon;
int randomizc;
int scen_num;
int

struct engin¢_node
struct engine_nodc
struct engin¢_node
struct engine_nodc
struct engine_nodc
struct engine_nodc
struct engine_node
struct engine_node
struct engine_node
struct engine_node
struct enginc_node
struct engine_node

* The current grid radius for the map */

/* Random scenario sclection flag */
/* The current scenario number */

still_in_last_engine_call;

*input_nodecs;
*curr_nodc;
*map_copy;
*clock;
*update_plat;
*red_detect_build;
*red_detcct_plag;
*blue_detect_build;
*blue_detect_plat;
*draw_plat;
*update_misc;
*display_changes;

Frame mainframe;

Rect *icon_recct;

Rect *frame_rcct:
Canvas maincanvas;

Rect *maincanvas_rcct;
Pixwin *canvas_pw;

int canvas_fd;

Event *canvas_ic;

short status_on;

short main_status_on;

CANVAS_WIN
ENGINE_NODE
struct pr_prpos
PANEL_WIN

/* robin usage */

*status_canvas;
*main_status_display_nodc;
status_title;

*curr_pan_win;

PANEL_WIN *cditor_pancl_win;
PANEL_WIN *manager_pancl_win;
PANEL_WIN *assignments_panel_win;
PANEL_WIN *class_pancl_win;
PANEL_WIN *(est_panel_win;
PANEL_WIN *dcfcon_pancl_win;
CANVAS_WIN *map_canvas_win;
int depth;

int disp_grid_in_batman;

int debug_on;

int playback_state;

int stats_save_events;

int stats_save_results;

int heads_up_dist;

float hecads_up_dist_squared;

Pixrect *screcn_pr;

Pixrect *display_pr;

Pixrect *star_field_pr;

Pixrect *map_pr,

Pixrect *robin_view_pr;

Pixrect *confidence_pr;

u_int chain_pw_draw_op;

u_int chain_pw_crasc_op;

u_int chain_pr_draw_op;
u_int chain_pr_erase_op;
u_int map_zoom_op;
u_int warning_panel_op;
Pixfont *med_font, *sm_font, *big_font, *scale_font;
short Integer_input;
short Input_entered;
short zoomed;

short Air_radar_on;

short Surf_radar_on;
short Subsurf_radar_on;
struct console_force_head *cfh;
struct path_force_head *pfh;
Pixrect *vl_pr;

Pixrect *air_explo_pr;
Pixrect *surf_explo_pr;
Pixrect *solid_pixrect;
Pixrect *checks_pixrect;
Pixrect *grey25_pixrect;
Pixrect *grey7S_pixrect;
Pixrect *chaff_pixrect;
Pixrect *hammer_pixrect;
Pixrect *status_pixrect;
Pixrect *alert_pixrect;
Pixrect *loadout_map_pixrect;
Pixrect *lat_lon_pixrect;
Pixrect *grid_pr;

Pixrect *launch_return_pr;
Pixrect *air_pixrect;
Pixrect *surf_pixrect;
Pixrect *subsurf_pixrect;
Pixrert *air_radar_pixrect;
Pixrcot *surf_radar_pixrect;
Pixree t *sonar_pixrect;
Pixrcct *zoom_pixrect;
Pixrect *move_pixrect;
Pixrect *remove_pixrect;
Pixrect *clear_pixrect;
Pixrect *dummy_pixrect;
Pixrect *next_types_pr;
Pixrcct *lask_force_pr;
Pixre -t *cap_pixrect;
Pixrect *chain_pixrect;
Pixrect *air_status_pr;

Pixr :t *surf_status_pr;
Pixro ot *sub_status_pr;
Pixre:t *tf_status_prs[3);

} SCENARIC HEAD;

66

LIST OF REFERENCES

Baecker, R.M., and Buxton, W.A.S, Readings in Human-Computer Interaction: A
Mulitdisciplanary Approach, Morgan Kaufman Publishers, Inc., 1987.

Federico, PA., BATMAN(Battle-Management Assessment System) & ROBIN(Raid
Originator Bogie Ingress): Rationale, Software Design, and Database Descriptions,
Navy Personnel Research and Development Center, 1989.

Naval Ocean Systems Center (NOSC), BUILD Program User’s Guide, Version 5.0, 1988.
Naval Ocean Systems Center (NOSC), FORCE Program User’s Guide, Version 5.1, 1989.

Pressman, R.S., Software Engineering: A Practioner’s Approach, McGraw-Hill Book
Company, 1987.

Shneiderman, B., Designing the User Interface: Sirategies for Effective Human-Computer
Interaction, Addison-Wesley, Publishing Co., 1987.

Shu, N, Visual Programming, Van Nostrand Reinhold Company, Inc., 1988.

Stroustrup, B., "What is Object-Oriented Programming?," IEEE Software, pp. 10-20, May
1988.

Sun Microsystems, Inc., SunView Programmers Guide, 1989.
Sun Microsystems, Inc., Sunview System Programmers Guide, 1989.

67

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

Commandant of the Marine Corps
Code TE 06

Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

Dr. James Eagle

Code OR/ER

Naval Postgraduate School
Monterey, CA 93943

CAPT Paul Bloch

Code ORBL

Naval Postgraduate School
Monterey, CA 93943

Capt Thomas Avey
MCOTEA

MCCDC

Quantico, VA 22134

OP73

Navy Department

The Pentagon

Washington, D.C. 92152-5000

John Dickinson

Code 454

Naval Ocean Systems Center
San Diego, CA 92152-5000

68

